• Title/Summary/Keyword: Nickel (Ni)

Search Result 1,524, Processing Time 0.031 seconds

Synthesis of (Ni,Mg)Al2O4 Ceramic Nano Pigment by a Polymerized Complex Method (착체중합법을 이용한 (Ni,Mg)Al2O4 Cyan 나노 무기안료 합성)

  • Son, Bo-Ram;Yoon, Dea-Ho;Han, Kyu-Sung;Cho, Woo-Suk;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.195-200
    • /
    • 2013
  • Here, we report preparation of cyan ceramic nano-pigment for inkjet printing and the Ni substitutional effects on the cyan color. $MgAl_2O_4$ was selected as the crystalline host network for the synthesis of nickel-based cyan ceramic nano-pigments. Various compositions of $Ni_xMg_{1-x}Al_2O_4$ ($0{\leq}x{\leq}1$) powders were prepared using the polymerized complex method. The powder was then preheated at $400^{\circ}C$ for 5 h and finally calcined at $1000^{\circ}C$ for 5 h. XRD patterns of $Ni_xMg_{1-x}Al_2O_4$ showed a single phase of the spinel structure in all the compositions. The particle sizes ranged from 20 to 50 nm in TEM observations. The characteristics of the color tones of $Ni_xMg_{1-x}Al_2O_4$ were analyzed by UV-Visible spectroscopy and CIE $L^*a^*b^*$ measurement. CIE $L^*a^*b^*$ measurement results indicate that the pigment color changes from light cyan to deep cyan due to the decrease of the $a^*$ and $b^*$ values with an increase of an Ni substitutional amount. In addition, the thermal stability and the binding nature of $Ni_xMg_{1-x}Al_2O_4$ are also discussed using TG-DSC and FT-IR results respectively.

Numerical Analysis on RF (Radio-frequency) Thermal Plasma Synthesis of Nano-sized Ni Metal (고주파 열플라즈마 토치를 이용한 Ni 금속 입자의 나노화 공정에 대한 전산해석 연구)

  • Nam, Jun Seok;Hong, Bong-Guen;Seo, Jun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.5
    • /
    • pp.401-409
    • /
    • 2013
  • Numerical analysis on RF (Radio-Frequency) thermal plasma treatment of micro-sized Ni metal was carried out to understand the synthesis mechanism of nano-sized Ni powder by RF thermal plasma. For this purpose, the behaviors of Ni metal particles injected into RF plasma torch were investigated according to their diameters ($1{\sim}100{\mu}m$), RF input power (6 ~ 12 kW) and the flow rates of carrier gases (2 and 5 slpm). From the numerical results, it is predicted firstly that the velocities of carrier gases need to be minimized because the strong injection of carrier gas can cool down the central column of RF thermal plasma significantly, which is used as a main path for RF thermal plasma treatment of micro-sized Ni metal. In addition, the residence time of the injected particles in the high temperature region of RF thermal plasma is found to be also reduced in proportion to the flow rate of the carrier gas In spite of these effects of carrier gas velocities, however, calculation results show that a Ni metal particle even with the diameter of $100{\mu}m$ can be completely evaporated at relatively low power level of 10 kW during its flight of RF thermal plasma torch (< 10 ms) due to the relatively low melting point and high thermal conductivity. Based on these observations, nano-sized Ni metal powders are expected to be produced efficiently by a simple treatment of micro-sized Ni metal using RF thermal plasmas.

Magnetic Properties of NiZn-ferrite Synthesized from The Refined Waste Iron Oxide Catalyst (정제된 산화철 폐촉매로부터 합성된 NiZn-페라이트의 자기적 특성)

  • Park, Sang-Il;Lee, Hyo-Sook;Choi, Hyun-Seok;Hwang, Yeon
    • Korean Journal of Crystallography
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • NiZn-ferrites were synthesized from the waste catalysts. which were by product of styrene monomer process and buried underground as an industrial wastes, and their magnetic properties were investigated. Nickel oxide and zinc oxide powders were mixed with finely ground waste catalysts, and spinel type ferrite was obtained by calcination at 900℃ and sintering at 1325℃ for 5 hours. The initial permeabilities were measured and reflection losses were calculated from S-parameters for the composition of Ni/sub x/Zn/sub 1-x/Fe₂O₄(x=0.36, 0.50, 0.66) and (Ni/sub 0.5/Zn/sub 0.5)/sub 1-y/Fe/sub 2+y/O₄(y=-0.02, 0, 0.02).

P-Type Doping of Graphene Films by Hybridization with Nickel Nanoparticles

  • Lee, Su Il;Song, Wooseok;Kim, Yooseok;song, Inkyung;Park, Sangeun;Cha, Myung-Jun;Jung, Dae Sung;Jung, Min Wook;An, Ki-Seok;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.208-208
    • /
    • 2013
  • Graphene has emerged as a fascinating material for next-generation nanoelectronics due to its outstanding electronic properties. In particular, graphene-based field effect transistors (GFETs) have been a promising research subject due to their superior response times, which are due to extremely high electron mobility at room temperature. The biggest challenges in GFET applications are control of carrier concentration and opening the bandgap of graphene. To overcome these problems, three approaches to doping graphene have been developed. Here we demonstrate the decoration of Ni nanoparticles (NPs) on graphene films by simple annealing for p-type doping of graphene. Ni NPs/graphene films were fabricated by coating a $NiCl2{\cdot}6H2O$ solution onto graphene followedby annealing. Scanning electron microscopy and atomic force microscopy revealed that high-density, uniformly sized Ni NPs were formed on the graphene films and the density of the Ni NPs increased gradually with increasing $NiCl2{\cdot}6H2O$ concentration. The formation of Ni NPs on graphene films was explained by heat-driven dechlorination and subsequent particlization, as investigated by X-ray photoelectron spectroscopy. The doping effect of Ni NPs onto graphene films was verified by Raman spectroscopy and electrical transport measurements.

  • PDF

Improved Microstructural Homogeneity of Ni-BCY Cermets Membrane via High-Energy Milling (고에너지 밀링을 통한 Ni-BaCe0.9Y0.1O3-δ 서멧 멤브레인의 미세구조 균질성 향상)

  • Kim, Hyejin;Ahn, Kiyong;Kim, Boyoung;Lee, Jongheun;Chung, Yong-Chae;Kim, Hae-Ryoung;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.648-653
    • /
    • 2012
  • Hybridization of dense ceramic membranes for hydrogen separation with an electronically conductive metallic phase is normally utilized to enhance the hydrogen permeation flux and thereby to increase the production efficiency of hydrogen. In this study, we developed a nickel and proton conducting oxide ($BaCe_{0.9}Y_{0.1}O_{3-{\delta}}$: BCY) based cermet (ceramic-metal composites) membrane. Focused on the general criteria in that the hydrogen permeation properties of a cermet membrane depend on its microstructural features, such as the grain size and the homogeneity of the mix, we tried to optimize the microstructure of Ni-BCY cermets by controlling the fabrication condition. The Ni-BCY composite powder was synthesized via a solid-state reaction using $2NiCO_3{\cdot}3Ni(OH)_2{\cdot}4H_2O$, $BaCeO_3$, $CeO_2$ and $Y_2O_3$ as a starting material. To optimize the mixing scale and homogeneity of the composite powder, we employed a high-energy milling process. With this high-energy milled composite powder, we could fabricate a fine-grained dense membrane with an excellent level of mixing homogeneity. This controlled Ni-BCY cermet membrane showed higher hydrogen permeability compared to uncontrolled Ni-BCY cermets created with a conventionally ball-milled composite powder.

Electrocatalytic properties of Te incorporated Ni(OH)2 microcrystals grown on Ni foam

  • Lee, Jung-Il;Oh, Seong Gyun;Kim, Yun Jeong;Park, Seong Ju;Sin, Gyoung Seon;Kim, Ji Hyeon;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.2
    • /
    • pp.96-101
    • /
    • 2021
  • Developing effective and earth-abundant electrocatalyst for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is critical for the commercialization of a water splitting system. In particular, the overpotential of the OER is relatively higher than the HER, and thus, it is considered that one of the important methods to enhance the performance of the electrocatalyst is to reduce the overpotential of the OER. We report effects of incorporation of metalloid into Ni(OH)2 microcrystal on electrocatalytic activities. In this study, Te incorporated Ni(OH)2 (��Te-Ni(OH)2) were grown on three-dimensional porous NF by a facile solvothermal method with �� = 1, 3 and 5. Homogeneous microplate structure on the NF was clearly observed for the Ni(OH)2/NF and ��Te-Ni(OH)2/NF samples. However, irregular and collapsed nanostructures were found on the surface of nickel foam when Te precursor ratio is (��) over 3. Electrocatalytic OER properties were analysed by Linear sweep voltammetry (LSV) and Electrochemical impedance spectroscopy (EIS). The amount of Te incorporation used in the electrocatalytic reaction was found to play a crucial role in improving catalytic activity. The optimum Te amount (��) introduced into the Ni(OH)2/NF was discussed with respect to their OER performance.

Study on Accumulation of Ni in Seedlings and Growth rate of Salix reichardtii by Hydroponic Culture in Ni Solution (수경재배에 의한 Salix reichardtii 묘의 생장 및 부위별 Ni축적에 관한 연구)

  • Lee, Chang-Heon;Lim, Yu-Mi
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.3
    • /
    • pp.292-297
    • /
    • 2010
  • This study was carried out to provide preliminary data to purify contaminated sites by nickel (Ni). After rooted cuttings of Salix reichardtii had been grown in Ni solution (hydroponic culture), pH changes in the solution and the accumulated Ni amount in plant parts were measured and analyzed. When the Ni concentration was low enough for S. reichardtii cuttings to grow well, the pH value of the solution decreased considerably. As the Ni concentration got higher, the plant growth got poorer and the pH value decreased slowly. Roots accumulated the highest Ni amount. Leaves and stems followed after. When stems were older, the accumulated Ni amount was lower. more Ni was accumulated in the plant parts which had more flexible tissue and live cells. As the Ni concentration in solution got higher up to 50.0 ${\mu}mol$/L, so did the Ni accumulation in the plant parts. However, the plant individuals nearly died and the Ni accumulation tended to drop when the Ni concentration in solution was 100.0 ${\mu}mol$/L. The rooted cuttings of S. reichardtii grew poorer as the Ni concentration in solution got higher. The plants in solution with 100.0 ${\mu}mol$/L of Ni were practically dead in four weeks.

Electrochemical Hydrogenation Behavior of Surface-Treated Mg-based Alloys for Hydrogen Storage of Fuel Cell (연료전지의 수소저장용 마그네슘계 합금의 표면제어에 의한 전기화학적 수소화 거동 연구)

  • Kim, Ho-Sung;Lee, Jong-Ho;Boo, Seong-Jae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.46-52
    • /
    • 2006
  • The effects of surface treatment on the hydrogen storage properties of a $Mg_2Ni$ alloy particle were investigated by the microvoltammetric technique, in which a carbon-filament microelectrode was manipulated to make electrical contact with the particle in a KOH aqueous solution. It was found that the hydrogen storage properties of $Mg_2Ni$ at room temperature were improved by the surface treatment with a nickel plating solution. The sodium salts(sodium phosphate and sodium dihydrogen citrate) contained in the nickel plating solution made the alloy form an amorphous-like state, resulting in an improved hydrogen charge/discharge capacity at room temperature as high as about 150[mAh/g] from the original value of 17[mAh/g]. Potential-step experiment was carried out to determine the apparent chemical diffusion coefficient of hydrogen atom($D_{app}$) in the alloy. Since the alloy particle we used here was a dense, conductive sphere, the spherical diffusion model was employed for data analysis. $D_{app}$ was found to vary the order between $10^{-8}{\sim}10^{-9}[cm^2/s]$ over the course of hydrogenation and dehydrogenation process.

Ecotoxicity of Daphnia magna and Aliivibrio fischeri on Potentially Harmful Substances Emissionsfrom Battery Manufacturing Processes: Lithium, Nickel, and Sulfate (배터리 제조공정에서 배출되는 잠재 유해 물질에 대한 물벼룩과 발광박테리아의 생태독성: 리튬, 니켈, 황산염을 대상으로)

  • Inhye Roh;Kijune Sung
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.2
    • /
    • pp.123-133
    • /
    • 2023
  • Wastewater generated in the secondary battery production process contains lithium and high-concentration sulfate. Recently, as demand as demand for high-Ni precursors with high-energy density has surged, nickel emission is also a concern. Lithium and sulfate are not included in the current water pollutant discharge standard, so if they are not properly processed and discharged, the negative effect on future environment may be great. Therefore, in this study, the ecotoxicity of lithium, nickel, and sulfate, which are potential contaminants that can be discharged from the secondary battery production process, was evaluated using water flea (Daphnia magna) and luminescent bacteria (Aliivibrio fischeri). As a result of the ecotoxicity test, 24-hour and 48-hour D. magna EC50 values of lithium were 18.2mg/L and 14.5mg/L, nickel EC50 values were 7.2mg/L and 5.4mg/L, and sulfate EC50 values were 4,605.5mg/L and 4,345.0mg/L, respectively. In the case of D. magna, it was found that there was a difference in ecotoxicity according to the contaminants and exposure time (24 hours, 48 hours). Comparing the EC50 of D. magna for lithium, nickel, and sulfate, the EC50 of nickel at 24h and 48h was 39.6-37.2% compared to lithium and 0.1-0.2% compared to sulfate, which was the most toxic among the three substances. The difference appeared to be at a similarlevelregardless of the exposure time. The EC50 of sulfate was 253.0-299.7% and 639.5-804.6%, respectively, compared to lithium and nickel, showing the least toxicity among the three substances. The 30-minute EC50 values of luminescent bacteria forlithium, nickel, and sulfate were 2,755.8mg/L, 7.4mg/L, and 66,047.3mg/L,respectively. Unlike nickel, it was confirmed that there was a difference in sensitivity between D. magna and A. fischeri bacteria to lithium and sulfate. Studies on the mixture toxicity of these substances are needed.

Corrosion Behavior of Stainless Steel 304, Titanium, Nickel and Aluminium in Non-Aqueous Electrolytes

  • Dilasari, Bonita;Park, Jesik;Kusumah, Priyandi;Kwon, Kyungjung;Lee, Churl Kyoung
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.26-29
    • /
    • 2014
  • The corrosion behavior of stainless steel 304 (SS 304), titanium, nickel and aluminium is studied by immersion and anodic polarization tests in non-aqueous electrolytes. Tetraethyl ammonium tetrafluoroborate is used as a supporting electrolyte in the three kinds of solvents. The immersion test shows that chemical corrosion rate in propylene carbonate-based electrolyte is lower than those in acetonitrile- or ${\gamma}$-butyrolactone-based electrolytes. Surface analyses do not reveal any corrosion product formed after the immersion test. In the anodic polarization tests, a higher concentration of supporting electrolyte gives a higher current density. In addition, a higher temperature increases the current density in the active region and reduces the potential range in the passive region. SS 304 shows the highest corrosion potential while Al shows the lowest corrosion potential and the highest current density in all studied conditions. Based on the conducted corrosion tests, the corrosion resistance of metal substrates in the organic solvents can be sorted in descending order as follows: SS 304 - Ti - Ni - Al.