• Title/Summary/Keyword: Nickel (Ni)

Search Result 1,524, Processing Time 0.026 seconds

Synthesis and Structure Analysis of α and β Forms of [12] Metallacrown-6 Nickel(II) Complex: [Ni6(SCH2CH2CH3)12]

  • Xiao, Hai Lian;Jian, Fang Fang;Zhang, Ke Jie
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.846-848
    • /
    • 2009
  • Two modifications of the ${\alpha}\;and\;{\beta}$ forms of propyl mercaptan nickel(II) cluster, [$Ni_6(SCH_2CH_2CH_3)_{12}$], have been synthesized and their crystal structures have been determined by single-crystal X-ray diffraction. The alkyl groups are away from $Ni_6$ ring in $\alpha$ form whereas they are near to the Ni atom in $\beta$ form. The distance of Ni-H in $\beta$ form [2.576(5) $\AA$] is much shorter than that in $\alpha$ form [3.101(2) $\AA$]. In the crystal lattice of $\beta$ form, the whole structure forms a flower shape.

NiO Films Formed at Room Temperature for Microbolometer

  • Jung, Young-Chul;Koo, Gyohun;Lee, Jae-Sung;Hahm, Sung-Ho;Lee, Yong Soo
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.327-332
    • /
    • 2013
  • Nickel oxide films using RF sputter was formed on the $SiO_2/Si$ substrate at the room temperature controlled with water circulation system. The feasibility of nickel oxide film as a bolometric material was demonstrated. GIXRD spectrum on NiO(111), NiO(200), and NiO(220) orientation expected as the main peaks were appeared in the grown nickel oxide films. The typical resistivity acquired at the RF power of 100W was about $34.25{\Omega}{\cdot}cm$. And it was reduced to $18.65{\Omega}{\cdot}cm$ according to the increase of the RF power to 400W. The TCR of fabricated micro-bolometer with the resistivity of $34.25{\Omega}{\cdot}cm$ was $-2.01%/^{\circ}C$. The characteristics of fabricated nickel oxide film and micro-bolometer were analyzed with XRD pattern, resistivity, TCR, and SEM images.

Synthesis of a Di-N-cyanoethylated Tetraaza Macrocycle Containing Eight C-Methyl Groups and Its Nickel(II) Complex: Effects of the Methyl Groups on Their Properties

  • Kang, Shin-Geol;Ryu, Ki-Seok;Kim, Jin-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.81-85
    • /
    • 2002
  • A new di-N-cyanoethylated 14-membered tetraaza macrocycle 1,8-bis(2-cyanoethyl)-3,5,7,7,10,12,14,14-octamethyl-1,4,8,11-tetraazacyclotetradecane $(L^2)$ and its nickel(II) complex $[NiL^2(OAc)]^+$ have been prepared. The square-planar complex $[NiL^2](C IO_4)_2$ can be prepared by addition of $HClO_4$ to a hot aqueous solution of $[NiL^2(OAc)]^+$ The Ni-N (tertiary amino group) bond distances $(2.008{\AA})$ of $[NiL^2](C IO_4)_2$ are relatively long, and the complex exhibits a d-d transition band at unusually long wavelength (ca. 515 nm). The complex $[NiL^2](C IO_4)_2$ rapidly reacts with acetate ion or ethylenediamine (en) to produce $[NiL^2(OAc)]^+$ or [Ni(en)_3]^{2+}$, respectively, and is readily decomposed in NaOH (0.01 M) solution. The chemical properties of $[NiL^2]^{2+}$ as well as its synthetic procedure are quite different from those for other related 14-membered tetraaza macrocyclic complexes. Effects of the N-cyanoethyl and C-methyl groups on the properties of $L^2$.

Effect of Ni/Fe Ion Concentration Ratio on Fuel Cladding Crud Deposition (핵연료 피복관 부식생성물 부착에 관한 Ni/Fe 이온 농도비의 영향)

  • Baek, S.H.;Kim, U.C.;Shim, H.S.;Lim, K.S.;Hur, D.H.
    • Corrosion Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.145-151
    • /
    • 2014
  • The objectives of this study are to investigate the effect of the concentration ratios of Ni and Fe ions on crud deposition onto the fuel cladding surface in the simulated primary environments of a pressurized water reactor. Crud deposition tests were conducted in the Ni and Fe concentration ratios of 20:20 ppm, 39:1 ppm and 1:39 ppm at $325^{\circ}C$ for 14 days. In the case of the same Ni and Fe ion ratio (20:20), nickel ferrite with a polyhedral shape was formed. Nickel oxide deposits with a needle shape were formed in the condition of high Ni to Fe ion ratio (39:1), While polyhedral iron oxide and needle-like nickel oxide formed in the condition of low Ni to Fe ion ratio (1:39). The amount of deposits increased, when Fe oxides were formed. This indicates that Fe rich oxides stimulated Ni oxide deposition.

A Study on the Characterization of Ni-C Thin Films Utilizing a Dual-Source Deposition System (듀얼 소스 증착장치를 이용한 Ni-C 박막의 특성에 관한 연구)

  • Han, Chang-Suk;Chun, Chang-Hwan;Han, Seung-Oh
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.5
    • /
    • pp.235-243
    • /
    • 2008
  • Ni-C composite films were prepared using a combination of microwave plasma CVD and ion beam sputtering deposition working in a codeposition way. The structure of these films was characterized by energy-dispersive X-ray diffraction (EDXRD), transmission electron microscopy (TEM) and Raman spectroscopy. It was found that a nickel carbide phase, $Ni_3C$ (hcp), formed as very fine crystallites over a wide temperature range when Ni-C films were deposited at low $CH_4$ flow rates. The thermal stability of this nonequilibrium carbide $Ni_3C$ was also studied. As a result, the $Ni_3C$ carbide was found to decompose into nickel and graphite at around $400^{\circ}C$. With high $CH_4$ flow rates (> 0.2 sccm), the structure of the Ni-C films became amorphous. The formation behavior of the carbide and amorphous Ni-C phases are discussed in relation to the electrical resistivity of the films.

Activated Carbon-Nickel (II) Oxide Electrodes for Capacitive Deionization Process

  • Gandionco, Karl Adrian;Kim, Jin Won;Ocon, Joey D.;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.552-559
    • /
    • 2020
  • Activated carbon-nickel (II) oxide (AC-NiO) electrodes were studied as materials for the capacitive deionization (CDI) of aqueous sodium chloride solution. AC-NiO electrodes were fabricated through physical mixing and low-temperature heating of precursor materials. The amount of NiO in the electrodes was varied and its effect on the deionization performance was investigated using a single-pass mode CDI setup. The pure activated carbon electrode showed the highest specific surface area among the electrodes. However, the AC-NiO electrode with approximately 10 and 20% of NiO displayed better deionization performance. The addition of a dielectric material like NiO to the carbon material resulted in the enhancement of the electric field, which eventually led to an improved deionization performance. Among all as-prepared electrodes, the AC-NiO electrode with approximately 10% of NiO gave the highest salt adsorption capacity and charge efficiency, which are equal to 7.46 mg/g and 90.1%, respectively. This finding can be attributed to the optimum enhancement of the physical and chemical characteristics of the electrode brought by the addition of the appropriate amount of NiO.

CH4 Dry Reforming on Alumina-Supported Nickel Catalyst

  • Joo, Oh-Shim;Jung, Kwang-Deog
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1149-1153
    • /
    • 2002
  • CH4/CO2 dry reforming was carried out to make syn gas on the Ni/Al2O3 catalysts calcined at different temperatures. The Ni/Al2O3 (850 $^{\circ}C)$ catalyst gave good activity and stability w hereas the Ni/Al2O3 $(450^{\circ}C)$ catalyst showed lower activity and stability. The NiO/Al2O3 catalyst calcined at $850^{\circ}C$ for 16 h (Ni/Al2O3 $(850^{\circ}C))$ formed the spinel structure of nickel aluminate, which was confirmed by TPR. The carbon formation rate on the Ni/Al2O3 $(850^{\circ}C)$ catalyst was very low till 20 h, and then steeply increased with reaction time without decreasing the activity for CH4 reforming. The Ni/Al2O3 $(450^{\circ}C)$ catalyst showed high carbon formation rate at the initial reaction time and then, the rate nearly stopped with continuous decreasing the activity for CH4 reforming. Even though the amount of carbon deposition on the Ni/Al2O3 $(850^{\circ}C)$ catalyst was higher than that on the Ni/Al2O3 $(450^{\circ}C)$ catalyst, the activity for CH4ing was also high, which could be attributed to the different type of the carbon formed on the catalyst surface.

Microstructure and Mgnetic Properties of Electrodeposited Nanocrystalline Low-Nickel Permalloy (전착법으로 제조한 나노결정질 저Ni 퍼멀로이의 미세 조직과 자기적 특성)

  • 허영두;이흥렬;황태진;임태홍
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.6
    • /
    • pp.455-460
    • /
    • 2003
  • Microstructural and magnetic properties of nanocrystalline Fe-46 wt%Ni and Fe-36 wt%Ni alloys were investigated. Alloys were prepared by the electrodeposition process. The electrolytes were iron sulfate/nickel chloride-based and iron chloride/nickel sulfamate-based solutions. Fe-46 wt%Ni alloy was FCC structure with grain size of 10 nm, but FCC and BCC phases were found in Fe-36 wt%Ni alloy and its grain size was smaller. Effective permeability of Fe-36 wt%Ni alloy was higher than that of Fe-46 wt%Ni alloy in the high frequency range because of large electrical resistivity and small eddy current loss resulted from grain size decrease. Up to $300^{\circ}C$ of annealing temperature, grain growth of Fe-Ni alloys slowly occured. Conversely, annealing above $450^{\circ}C$ led to a drastic grain growth. In that case, effective permeability was decreased at the temperature lower than $300^{\circ}C$ but at $300^{\circ}C$ or higher effective permeability was increased. At the high frequency of 1 MHz, electrodeposited Fe-Ni alloys had higher effective permeability with an decrease in the grain size.

Fabrication and H2S Sensing Property of Nickel Oxide and Nickel Oxide-Carbon Nanotube Composite (산화니켈 및 탄소나노튜브/산화니켈 복합체 가스센서의 제작과 황화수소 감지 특성)

  • Yang, Haneul;Chinh, Ngyuen Duc;Hieu, Ngyuen Minh;Park, Jihwan;Hong, Soonhyun;yun, Hongkwan;Kim, Chunjoong;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.28 no.8
    • /
    • pp.466-473
    • /
    • 2018
  • Nickel oxide(NiO) thin films, nanorods, and carbon nanotube(CNT)/NiO core-shell nanorod structures are fabricated by sputtering Nickel at different deposition time on alumina substrates or single wall carbon nanotube templates followed by oxidation treatments at different temperatures, 400 and $700^{\circ}C$. Structural analyses are carried out by scanning electron microscopy and x-ray diffraction. NiO thinfilm, nanorod and CNT/NiO core-shell nanorod structurals of the gas sensor structures are tested for detection of $H_2S$ gas. The NiO structures exhibit the highest response at $200^{\circ}C$ and high selectivity to $H_2S$ among other gases of NO, $NH_3$, $H_2$, CO, etc. The nanorod structures have a higher sensing performance than the thin films and carbon nanotube/NiO core-shell structures. The gold catalyst deposited on NiO nanorods further improve the sensing performance, particularly the recovery kinetics.

A Study of cut off effect of ultraviolet in sunglasses lens coated with nickel-ferrite thin film NxFe3-xO4 (니켈페라이트 박막 NxFe3-xO4를 이용한 선글라스 렌즈의 자외선 차단효과에 대한 연구)

  • Ha, T.W.;Lee, Y.H.;Choi, K.S.;Cha, J.W.
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.8 no.2
    • /
    • pp.25-29
    • /
    • 2003
  • Nickel-ferrite $Ni_xFe_{3-x}O_4$ thin films with several composition for Ni on glass substrate was prepared by ferrite plating method in order to make sunglass which cut off ultraviolet and shield electromagnetic field. It has single phase of polycrystalline spinel structure and has gloss as mirror and has high hardness which is no scratch while scraping by using nail. The transmittance of nickel-ferrite thin film is lowered to zero below 400 nm manifestly. And it shows that the nickel-ferrite thin film in nickel composition rate x = 0.09 was most cut oil ultraviolet when compared with goods of other company in the cut off effect of ultraviolet. Therefore, sunglasses coated with $Ni_xFe_{3-x}O_4$ thin film can be used in removing ultraviolet and electromagnetic field.

  • PDF