• Title/Summary/Keyword: Nickel (Ni)

Search Result 1,531, Processing Time 0.038 seconds

The Effects of Electroplating Parameters on the Morphologies and Compositions of Nickel-Iron Alloy Electrodeposits (Ni-Fe의 도금 층의 조성과 표면 형상에 영향을 미치는 도금인자들에 관한 연구)

  • Ko, Yeong-Kwon;Yim, Tai-Hong;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.3
    • /
    • pp.51-55
    • /
    • 2007
  • Nickel iron (Ni-Fe) alloy coating was investigated. The effects of the current density, current type, pulse duration and bath compositions on the morphologies and surface hardness of nickeliron deposits as well as the chemical compositions were investigated. The morphologies, surface hardness and chemical compositions of nickel-iron deposits were varied with current density, current type and bath compositions. The surface hardness was increased up to $550{\sim}600Hv$ when PC plating was employed. Crackless coating was obtained when saccharin was added. The change of composition with thickness was analyzed with EDS and FESEM.

  • PDF

The Variation of Texture in Planar isotropic Ni Electrodeposits (평명등방성 Ni 도금층의 집합조직의 변화)

  • 김인수;이세광
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.262-265
    • /
    • 1998
  • Nickel Plating improves on the corrosion resistance of materials in acid and moisture environment. In this study, we investigated the surface morphology, XRD patterns and pole figures of the various types of Ni electrodeposits. The texture of Ni electrodeposits changed from <100> to <111> through <110> with increasing the temperature of electrolyte and the concentration of nickel ion. The texture of Ni electrodeposits changed from <100> to <100> after annealing. Also the <110> texture changed to the <√310> texture after annealing.

  • PDF

A STUDY ON COMPARISON OF STAINLESS STEEL, NICKEL-TITANIUM HAND, NICKEL-TITANIUM ENGINE-DRIVEN FILE INSTRUMENTATION USING COMPUTED TOMOGRAPHY (수동형 Stainless Steel, Nickel-Titanium 및 엔진 구동형 Nickel-Titanium File의 근관형성 능력에 관한 비교 연구)

  • Lee, Hwang;Im, Mi-Kyung;Lee, Keon-Il;Lee, Yong-Keun
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.391-400
    • /
    • 1998
  • The aim of this study was to determine the shaping ability of stainless-steel K file (S-S K file), nickel-titanium K file (Ni-Ti K file) and engine driven nickel-titanium file (Quantec file) in resin simulated root canal. Computed tomography was used to evaluate the change of the root canal morphology. Thirty nine resin simulated root canal were divided into four groups (A:12, B:12, C:12, D:3). Resin simulated canals were scanned by computed tomography before instrumentation (1st C-T scan). Canals were instrumented using step back preparation technique with S-S K file in group A and Ni-Ti K file in group B. Group C was prepared with engine driven Ni-Ti file. Group D was uninstrumented to compare the 1st C-T scan images with 2nd C-T scan images of root canal. Instrumented canals were again scanned using computed tomography (2nd C-T scan), and reformated images of the uninstrumented canals were compared with images of the instrumented canals. In the sections of 2mm and 6mm from the apex, Quantec file caused significantly less canal transportation than S-S K file and Ni-Ti K file (p<0.05). Quantec file produced more centered than S-S K file and Ni-Ti K file in the sections of 2mm and 4mm from the apex (p<0.05). There was no significant difference in the removed volume of canals among the each groups (p>0.05). However the removed canal volume from the apex to 5mm were significantly higher than them from 5mm to 1mm (p<0.05) in each groups. Under the conditions of this study, preparation with Quantec file was more effective and produce more appropriate canal shapes than S-S K file and Ni-Ti K file.

  • PDF

Formation of Al2O2 supported Ni2P based 3D catalyst for atmospheric deoxygenation of rubberwood sawdust

  • Pranshu Shrivastava
    • Advances in Energy Research
    • /
    • v.8 no.4
    • /
    • pp.223-231
    • /
    • 2022
  • An ex-situ gravitational fixed bed pyrolysis reactor was used over Al2O3 supported Ni2P based catalyst with various Ni/P molar ratios (0.5-2.0) and constant nickel loading of 5.37 mmol/g Al2O3 to determine the hydrodeoxygenation of rubberwood sawdust (RWS) at atmospheric pressure. The 3D catalysts formed were characterized structurally as well as acidic properties were determined by hydrogen-temperature programmed reduction (TPR). The Ni2P phase formed completely on Al2O3 for 1.5 Ni/P ratio, although lesser crystallite sizes of Ni2P were seen at Ni/P ratios less than 1.5. Additionally, it was shown that when nickel loading level increased, acidity increased and specific surface area dropped, probably because nickel phosphate is not easily converted to Ni2P. When Ni/P ratio was 1.5, Ni2P phase fully formed on Al2O3. The catalytic activity was explained in terms of impacts of reaction temperature and Ni/P molar ratio. At relatively high temperature of 450℃, the high-value deoxygenated produce was predominantly composed of n-alkanes. Based on the findings, it was suggested that hydrogenolysis, hydrodeoxygenation, dehydration, decarbonylation, and hydrogenation are all part of mechanism underlying hydrotreatment of RWS. In conclusion, the synthesized Ni2P/ Al2O3 catalyst was capable of deoxygenating RWS with ease at atmospheric pressure, primarily resulting in long chained (C9-C24) hydrocarbons and acetic acid.

Texture Formation of Eletroplated Nickel and Nickel Alloy on Cu Substrate (구리 기판에 전착시킨 니켈과 니켈합금의 집합조직 형성)

  • Kim, Jae-Geun;Lee, Sun-Wang;Kim, Ho-Jin;Hong, Gye-Won;Lee, Hee-Gyoun
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.145-151
    • /
    • 2006
  • Nickel and nickel-tungsten alloy were electroplated on a cold rolled and heat treated copper(Cu) substrate. 4 mm-thick high purity commercial grade Cu was rolled to various thicknesses of 50, 70, 100 and 150 micron. High reduction ratio of 30% was applied down to 150 micron. Rolled texture was converted into cube texture via high temperature heat treatment at $400-800^{\circ}C$. Grain size of Cu was about 50 micron which is much smaller compared to >300 micron for the Cu prepared using smaller reduction pass of 5%. 1.5 km-long 150 micron Cu was fabricated with a rolling speed of 33 m/min and texture of Cu was uniform along length. Abnormal grain growth and non-cube texture appeared for the specimen anneal above $900^{\circ}C$. 1-10 micron thick Ni and Ni-W film was electroplated onto an annealed cube-textured Cu or directly on a cold rolled Cu. Both specimens were annealed and the degree of texture was measured. For electroplating of Ni on annealed Cu, Ni layer duplicated the cube-texture of Cu substrate and the FWHM of in plane XRD measurement for annealed Cu layer and electroplated layer was $9.9^{\circ}\;and\;13.4^{\irc}$, respectively. But the FWHM of in plane XRD measurement of the specimen which electroplated Ni directly on cold rolled Cu was $8.6^{\circ}$, which is better texture than that of nickel electroplated on annealed Cu and it might be caused by the suppression of secondary recrystallization and abnormal grain growth of Cu at high temperature above $900^{\circ}C$ by electroplated nickel.

  • PDF

Improvement of Chemical Mechanical Polishing (CMP) Performance of Nickel by Additions of Abrasive and Various Oxidizers (산화제 및 연마제 첨가를 통한 Nickel CMP 특성 개선 연구)

  • Choi, Gwon-Woo;Kim, Nam-Hoon;Seo, Yong-Jin;Lee, Woo-Sun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.605-609
    • /
    • 2005
  • Chemical mechanical polishing (CMP) of Ni was performed by the various ratios of four kinds of oxidizers and an addition of alumina powders as an abrasive in each slurry with the different oxidizers. Moreover, the interaction between the Ni and the each oxidizer was discussed by potentiodynamic polarization measurement, in order to compare the effects of Ni-CMP and electrochemical characteristics on the Ni with the different oxidizers. As an experimental result, the removal rate of Ni reached a maximum at 1 $vol\%$ of $H_2O_2$. Also the removal rates of Ni increased with the audition of alumina abrasives in each slurry. The potentiodynamic polarization of Ni under dynamic condition showed a significant difference in electrochemical behavior by addition of $H_2O_2$ in solutions. Ni showed the perfect passivation behavior in solution without $H_2O_2$ under potentiodynamic polarization condition, while active dissolution dominates in solution with the addition of $H_2O_2$. The results indicate that the surface chemistry and electrochemical characteristics of Ni play an important role in controlling the polishing behavior of Ni.

Fabrication and characterization of nickel oxide films on textured nickel substrate for a superconductor buffer layer (초전도 선재의 중간 반응 방지막으로써 Ni 기판위에 제조된 NiO 막의 특성 분석)

  • Park, Eunchul;Inki Hong;Hyunsuk Hwang;Taehyun Sung;Kwangsoo No
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.95-98
    • /
    • 2001
  • Recently, NiO films have been studied as a buffer layer to fabricate the superconductor with preferred orientation and as a diffusion barrier to prevent the reaction between superconductor and textured nickel substrate . We fabricated NiO films on textured Ni substrate by thermal oxidation with various variables of temperature, oxidation time, atmosphere, and cooling rate. We investigated the alignment of NiO films by XRD and pole figure and the microstructures by SEM. (200) <001> alignment of NiO film was observed at the oxidation condition of $1200^{\circ}C$ far 10min and slow cooling in O2 atmosphere. During the process in Ar atmosphere, we could also observe the thermal faceting which affects the alignment of NiO alms on Ni substrate.

  • PDF

Property of Nickel Silicides with Hydrogenated Amorphous Silicon Thickness Prepared by Low Temperature Process (나노급 수소화된 비정질 실리콘층 두께에 따른 저온형성 니켈실리사이드의 물성 연구)

  • Kim, Jongryul;Choi, Youngyoun;Park, Jongsung;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.11
    • /
    • pp.762-769
    • /
    • 2008
  • Hydrogenated amorphous silicon(a-Si : H) layers, 120 nm and 50 nm in thickness, were deposited on 200 $nm-SiO_2$/single-Si substrates by inductively coupled plasma chemical vapor deposition(ICP-CVD). Subsequently, 30 nm-Ni layers were deposited by E-beam evaporation. Finally, 30 nm-Ni/120 nm a-Si : H/200 $nm-SiO_2$/single-Si and 30 nm-Ni/50 nm a-Si:H/200 $nm-SiO_2$/single-Si were prepared. The prepared samples were annealed by rapid thermal annealing(RTA) from $200^{\circ}C$ to $500^{\circ}C$ in $50^{\circ}C$ increments for 30 minute. A four-point tester, high resolution X-ray diffraction(HRXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and scanning probe microscopy(SPM) were used to examine the sheet resistance, phase transformation, in-plane microstructure, cross-sectional microstructure, and surface roughness, respectively. The nickel silicide on the 120 nm a-Si:H substrate showed high sheet resistance($470{\Omega}/{\Box}$) at T(temperature) < $450^{\circ}C$ and low sheet resistance ($70{\Omega}/{\Box}$) at T > $450^{\circ}C$. The high and low resistive regions contained ${\zeta}-Ni_2Si$ and NiSi, respectively. In case of microstructure showed mixed phase of nickel silicide and a-Si:H on the residual a-Si:H layer at T < $450^{\circ}C$ but no mixed phase and a residual a-Si:H layer at T > $450^{\circ}C$. The surface roughness matched the phase transformation according to the silicidation temperature. The nickel silicide on the 50 nm a-Si:H substrate had high sheet resistance(${\sim}1k{\Omega}/{\Box}$) at T < $400^{\circ}C$ and low sheet resistance ($100{\Omega}/{\Box}$) at T > $400^{\circ}C$. This was attributed to the formation of ${\delta}-Ni_2Si$ at T > $400^{\circ}C$ regardless of the siliciation temperature. An examination of the microstructure showed a region of nickel silicide at T < $400^{\circ}C$ that consisted of a mixed phase of nickel silicide and a-Si:H without a residual a-Si:H layer. The region at T > $400^{\circ}C$ showed crystalline nickel silicide without a mixed phase. The surface roughness remained constant regardless of the silicidation temperature. Our results suggest that a 50 nm a-Si:H nickel silicide layer is advantageous of the active layer of a thin film transistor(TFT) when applying a nano-thick layer with a constant sheet resistance, surface roughness, and ${\delta}-Ni_2Si$ temperatures > $400^{\circ}C$.

Thermally Stabilized Porous Nickel Support of Palladium Based Alloy Membrane for High Temperature Hydrogen Separation

  • Ryi, Shin-Kun;Park, Jong-Soo;Cho, Sung-Ho;Hwang, Kyong-Ran;Kim, Sung-Hyun
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.133-139
    • /
    • 2007
  • Nickel powder was coated with aluminum nitrate solution to increase the thermal stability of a porous nickel support and control the nickel content in the Pd-Cu-Ni ternary alloyed membrane. Raw nickel powder and alumina coated nickel powder were uniaxialy pressed by home made press with metal cylindrical mold. Though the used nickel powder prepared by pulsed wire evaporation (PWE) method has a good thermal stability, the porous nickel support was too much sintered and the pores of porous nickel support was plugged at high temperature (over $800^{\circ}C$) making it not suitable for the porous support of a palladium based composite membrane. In order to overcome this problem, the nickel powder was coated by alumina and alumina modified porous nickel support resists up to $1000^{\circ}C$ without pore destruction. Furthermore, the compositions of Pd-Cu-Ni ternary alloy membrane prepared by magnetron sputtering and Cu-reflow could be controlled by not only Cu-reflow temperature but also alumina coating amount. SEM analysis and mercury porosimeter analysis evidenced that the alumina coated on the surface of nickel powder interrupted nickel sintering.

Development of Cube Texture in a Silver-Nickel Bi-layer Sheet

  • Lee, Hee-Gyoun;Jung, Yang-Hong;Hong, Gye-Won
    • Progress in Superconductivity
    • /
    • v.1 no.1
    • /
    • pp.47-50
    • /
    • 1999
  • An Ag/Ni bi-layer sheet was fabricated by the combination of powder metallurgy, diffusion bonding, cold rolling and texture annealing processes. After heat treating the cold rolled thin Ag/Ni bi-layer sheet at $900^{\circ}C$ for 4h, the excellent cube texture was developed on nickel surface. Qualitative chemical analysis using EPMA showed that inter diffusions of Ni and Ag in Ag/Ni bi-layer composite were negligible. It showed that Ag can be used as a chemical barrier for Ni and vice versa.

  • PDF