• Title/Summary/Keyword: Nickel (Ni)

Search Result 1,524, Processing Time 0.033 seconds

Development of sacrificial layer wet etch process of TiNi for nano-electro-mechanical device application

  • Park, Byung Kyu;Choi, Woo Young;Cho, Eou Sik;Cho, Il Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.4
    • /
    • pp.410-414
    • /
    • 2013
  • We report the wet etching of titanium nickel (TiNi) films for the production of nano-electro-mechanical (NEM) device. $SiO_2$ and $Si_3N_4$ have been selected as sacrificial layers of TiNi metal and etched with polyethylene glycol and hydrofluoric acid (HF) mixed solution. Volume percentage of HF are varied from 10% to 35% and the etch rate of the $SiO_2$, $Si_3N_4$ and TiNi are reported here. Within the various experiment results, 15% HF mixed polyethylene glycol solution show highest etch ratio between sacrificial layer and TiNi metal. Especially $Si_3N_4$ films shows high etch ratio with TiNi films. Wet etching results are measured with SEM inspection. Therefore, this experiment provides a novel method for TiNi in the nano-electro-mechanical device.

Evaluation of the Reactivity of Bulk Nano Ni/Al Powder Manufactured by Shock Compaction Process (충격압분공정으로 제조된 나노 니켈/알루미늄 혼합분말재의 특성 평가)

  • Kim, W.;Ahn, D.H.;Park, L.J.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.4
    • /
    • pp.216-221
    • /
    • 2017
  • Recently, interest in multifunctional energetic structural materials (MESMs) has grown due to their multifunctional potential, especially in military applications. However, there are few studies about extrinsic factors that govern the reactivity of MESMs. In this paper, a shock compaction process was performed on the nano Ni/Al-mixed powder to investigate the effect of particle size on the shock reaction condition. Additionally, heating the statically compacted specimen was also performed to compare the mechanical properties and microstructure between reacted and unreacted material. The results show that the agglomerated structure of nanopowders interrupts the reaction by reducing the elemental boundary. X-ray diffraction analysis shows that the NiAl and $Ni_3Al$ intermetallics are formed on the reacted specimen. The microhardness results show that the $Ni_3Al$ phase has a higher hardness than NiAl, but the portion of $Ni_3Al$ in the reacted specimen is minor. In conclusion, using Ni/Al composites as a reactive material should focus on energetic use.

Role of a ZnO buffer layer for the formation of epitaxial NiO films

  • Gwon, Yong-Hyeon;Cheon, Seong-Hyeon;Lee, Ju-Ho;Lee, Jeong-Yong;Jo, Hyeong-Gyun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.85-85
    • /
    • 2012
  • NiO는 니켈 공공과 침입형 산소 이온에 의한 비화학적양론 특성 때문에 자발적으로 p-형 반도체 특성을 나타내는 것으로 알려져 있다. NiO는 3.7 eV 의 넓은 밴드갭을 가지고 있어 투명소자를 위한 hole injection layer 나 hole transport layer로 사용하기 위한 연구가 많이 이루어지고 있다. 또한, 안정적인 p-형 반도체 특성은 n-형 산화물 반도체와의 접합을 통해 복합소자의 구현이 용이하기 때문에, ZnO 등과의 접합을 통한 소자 구현이 가능하다.[1] 하지만, 기존의 많은 연구에서는 내부의 결함이 많이 존재하는 다결정 박막을 사용하였기 때문에, 전하의 이동에 제한이 발생해, 충분한 소자 특성을 나타내지 못하였다. 최근 Dutta의 연구에 의하면, 결정질 사파이어 기판위에 박막을 성장할 경우 [111] 방향으로 우선 배향성을 가진 NiO 박막을 얻을 수 있다고 알려져 있다.[2] 본 실험에서는 NiO 박막을 이용한 PN 접합소자 구현을 위해 사파이어 위에 p-NiO 박막을 에피택셜하게 성장한 후 구조적 특성을 분석하였으며, n-ZnO 박막을 그 위에 성장하여 소자를 제작하였다. 그 결과 ZnO 또한 에피택셜한 성장을 하는 것을 확인할 수 있었다. 성장순서에 따른 PN 접합구조 특성을 확인하기 위해 사파이어 위에 ZnO 를 성장시킨 후 NiO 를 성장시킨 결과 NiO 박막의 우선성장 방향이 [100]으로 변하는 것을 확인할 수 있었다.

  • PDF

The Characterization of Nano-Nickel Catalyst with High Activity by Mechanochemical (MC) Method I. Microstructure of MA Ni-50wt% Al and Preparation of Nano-Ni (기계.화학적 방법으로 제조된 고활성 나노-니켈 촉매의 특성 I. MA된 Ni-50wt% Al 합금의 미세구조 및 나노 촉매 제조)

  • Lee, Chang-Rae;Choe, Jae-Ung;Gang, Seong-Gun
    • Korean Journal of Materials Research
    • /
    • v.9 no.6
    • /
    • pp.615-621
    • /
    • 1999
  • The new process in order to fabricate of Ni catalyst with high activity by the mechanochemical(MC) method which was combined the mechanical alloying(MA) and the chemical treatment process. The microstructure and characterization of mechanically alloyed Ni-5-wt% Al powder and Ni catalyst gained by alkali leaching were investigated byt he various analysis such as XRD, SEM-EDS, HRTEM and laser particle analyzer. The steady state powder with 1~2$\mu\textrm{m}$ mean particle size was obtained after 30hr milling with the PCA of 2 wt% stearic acid under the condition of grinding stainless steel ball to powder ratio of 60:1 and rotating speed fo 300rpm. According to result of HRTEM diffraction pattern, MA powder of the steady state was nanocrystalline $Al_3$$Ni_2$ intermetallic compound. Ni catalyst was obtained after KOH leaching of the steady state powder was about 20nm nanocrystalline which contained about 8 wt % Al.

  • PDF

A STUDY ON THE RECOVERY OF LITHIUM AND Ni/Co OXIDE FROM CATHODE ACTIVE POWDER OF END-OF-LIFE NCA(LiNiCoAlO2) BATTERY

  • SHUN-MYUNG SHIN;DONG-JU SHIN;SUNG-HO JOO;JEI-PIL WANG
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.2
    • /
    • pp.481-485
    • /
    • 2019
  • This study was attempted to study for recovery of Li as Li2CO3 from cathode active material, especially NCA (LiNiCoAlO2), recovered from spent lithium ion batteries. This consists of two major processes, carbonation using CO2 and water leaching. Carbonation using CO2 was performed at 600℃, 700℃ and 800℃, and NCA (LiNiCoAlO2) was phase-separated into Li2CO3, NiO and CoO. The water leaching process using the differences in solubility was performed to obtain the optimum conditions by using the washing time and the ratio of the sample to the distilled water as variables. As a result, NCA (LiNiCoAlO2) was phase-separated into Li2CO3 and NiO, CoO at 700℃, and Li2CO3 in water was recovered through vacuum filtration after 1 hour at a 1:30 weight ratio of the powder and distilled water. Finally, Li2CO3 containing Li of more than 98 wt.% was recovered.

Polymer-Metal Complexes(II). Catalytic Activity of Some Ni(II)-Polyethyleneimine Complexes (고분자-금속착물 (제2보). 몇가지 Ni(II)-Polyethyleneimine 착물의 촉매활성도)

  • Jung Hag Park;Tae Sub Cho
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.394-398
    • /
    • 1981
  • Two types of Ni(II)-polyethyleneimine (PEI) complexes, [Ni(PEI)]$Cl_2$ and [Ni(P-EI)$Cl_2$] were synthesized and their catalytic activities in the decomposition reaction of hydrogen peroxide were investigated. For the purpose of comparison, the corresponding monomeric complexes, $[Ni(en)_3]Cl_2$ and $[Ni(en)_2Cl_2$ were also prepared; it was observed that their activities increase in the following order; $0{\approx}[Ni(en)_3]Cl_2{\le}[Ni(en)_2Cl_2]<[Ni(PEI)]Cl_2<[Ni(PEI)Cl_2]$ On the basis of structural analysis by means of visible and infrared spectroscopy, the catalytic activiy of these Ni(II)-PEI complexes is assumed to depend on the bond strength between the ligand and the nickel ion.

  • PDF

Separate and Combined Effect of Cadmium and Nickel on Blood Pressure in Rats (흰쥐에서 카드뮴과 니켈이 혈압에 미치는 효과)

  • Cha, Bong-Suk;Wang, Seung-Jun
    • Journal of Preventive Medicine and Public Health
    • /
    • v.34 no.2
    • /
    • pp.127-130
    • /
    • 2001
  • Objective : To verify the separate and combined effects of cadmium and nickel on blood pressure in rats. Methods : Following the daily administration of cadmium chloride$(CdCl_2)$ and nickel chloride$(NiCl_2)$ to rats both individually and in combination with intraperitoneal injection method for one week, systolic blood pressure of the tail was measured at 1 day and 5, 10, 20, 30 days after administration. Each substance was injected into the rats with 0.1 mg/kg bw and 1.0 mg/kg bw concentration. Results : After 0.1 mg/kg bw $CdCl_2$ was injected, a statistically significant difference was found as compared with the control group(only saline) after 1, 5 and 10 days. After 0.1 mg/kg bw $NiCl_2$ was injected, a statistically significant difference was not found compared with the control group. After 0.1 mg/kg bw $CdCl_2$ and 0.1 mg/kg bw $NiCl_2$ were injected simultaneously, a statistically significant difference was found as compared with the control group after 1,5 and 10 days and compared with 0.1 mg/kg bw $CdCl_2$ group after 5 days and as compared with 0.1 mg/kg bw $NiCl_2$ group after 5 and 10 days. After 1.0 mg/kg bw $CdCl_2$ was injected, a statistically significant difference was found as compared with the control group after 1, 5, 10 and 20 days. After 1.0 mg/kg bw $NiCl_2$ was injected, a statistically significant difference was found as compared with the control group after 1 day and 5 days. After 1.0 mg/kg bw $CdCl_2$ and 1.0 mg/kg bw $NiCl_2$ were injected in combination, a statistically significant difference was found after 1, 5, 10, 20 and 30 days as compared with 1.0 mg/kg bw $CdCl_2$ after 10, 20 and 30 days and as compared with 1.0 mg/kg bw $NiCl_2$ after 5, 10, 20 and 30 days. Conclusion : It was found that the effect of $CdCl_2$ on blood pressure was much more than $NiCl_2$ and a high concentration $CdCl_2\;and\;NiCl_2$ in combination delayed the recovery of blood pressure.

  • PDF

A study on the Ni formation by reduction of NiO nano crystals (NiO 나노 결정의 환원 반응에 의한 Ni 형성 거동에 관한 연구)

  • Kim, Chang-Sam;Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.5
    • /
    • pp.246-250
    • /
    • 2009
  • The Ni formation behavior from the reduction of NiO nano crystals in the $H_2/N_2$ gas mixtures. The NiO nano crystals were synthesized by heat-treating nickel nitrate$(Ni(NO_3)_2\cdot6H_O)$ in the air at $500^{\circ}C$, and had an octahedral shape and the particle size of 200~500 nm. The NiO nano-crystals had well-developed (111) planes which is hardly formed in normal synthetic conditions. The reduction process was carried out at 300 and $600^{\circ}C$ for 15 and 60 minutes, respectively. When the NiO nano-crystals were reduced at $300^{\circ}C$, the Ni particles sustained the same octahedral shape as NiO, while Ni particles were to agglomerate at $600^{\circ}C$.

Effective Suppression of Methane Production by Chelating Nickel of Methanogenesis Cofactor in Flooded Soil Conditions (담수토양에서 메탄생성반응 보효소 니켈의 킬레이팅에 의한 메탄 생산량의 효과적 저감)

  • Kim, Tae Jin;Hwang, Hyun Young;Hong, Chang Oh;Lee, Jeung Joo;Kim, Gun Yeob;Kim, Pil Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.282-289
    • /
    • 2014
  • BACKGROUND: Methane($CH_4$) is considered as the secondmost potent greenhouse gas after carbon dioxide ($CO_2$). Methanogenesis is an enzyme-mediated multi-step process by methanogens. In the penultimate step, methylated Co-M is reduced by methyl Co-M reductase (MCR) to $CH_4$ involving a nickel-containing cofactor F430. The activity of MCR enzyme is dependent on the F430 and therefore, the bioavailability of Ni to methanogens is expected to influence MCR activity and $CH_4$ production in soil. In this study, different doses of EDTA(Ethylene Diamine Tetraacetic Acid) were applied in flooded soils to evaluate their suppression effect on methane production by chelating Ni of methanogenesis cofactor. METHODS AND RESULTS: EDTA was selected as chelating agents and added into wetland and rice paddy soil at the rates of 0, 25, 50, 75, and $100mmol\;kg^{-1}$ before 4-weeks incubation test. During the incubation, cumulative $CH_4$ production patterns were characterized. At the end of the experiment, soil samples were removed from their jars to analyze total soil Ni and water-soluble Ni content and methanogen abundance. Methane production from 100 mmol application decreased by 55 and 78% in both soils compared to that from 0 mmol. With increasing application rate of EDTA in both soils, water-soluble Ni concentration significantly increased, but total soil Ni and methanogen activities showed negative relationship during incubation test. CONCLUSION: The decrease in methane production with EDTA application was caused by chelating Ni of coenzyme F430 and inhibiting methanogenesis by methyl coenzyme M reductase. Consequently, EDTA application decreased uptake of Ni into methanogen, subsequently inhibited methanogen activities and reduced methane production in flooded soils.

The Catalytic Reduction of Carbon Dioxide by Butane over Nickel loaded Catalysts (니켈담지촉매상에서 부탄에 의한 이산화탄소의 환원반응)

  • Yoon, Cho-Hee;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.543-549
    • /
    • 1997
  • The direct reaction of carbon dioxide($CO_2$) with butane($C_4H_{10}$) to obtain synthesis gas and hydrocarbon compounds have been studied on nickel loaded catalysts. In the reaction of $CO_2$ with $C_4H_{10}$, Ni loaded catalysts showed similar activity with Pt catalyst and Coke deposition on the catalyst was severe by dehydrogenation of butane. The main products were carbon monoxide and hydrogen, when alumina and Y type zeolite were used as a support. Instead, a great deal of aromatic hydrocarbons were obtained on the Ni loaded ZSM-5 catalyst. The conversion of $CO_2$ increased with the increasing molar ratio of $CO_2$/$C_4H_{10}$ on Ni/ZSM-5, Ni/NaY and Ni/alumina catalyst, but the conversion decreased again from the ratio of 2. The value of $CO_2$ conversion was the highest at the 5wt% of Ni loading on ZSM-5 catalyst. A part of cokes deposited on the catalysts diminished when only $CO_2$ gas or water steam flowed into the reactor. The coke deposited on the catalysts was very reactive and it may be an important intermediate for the carbon dioxide reforming reaction.

  • PDF