• Title/Summary/Keyword: Nickel (Ni)

Search Result 1,524, Processing Time 0.033 seconds

Numerical Study on Normal Propagation Bimetallic Reaction Wave in Al/Ni Nano-Multilayers (알루미늄/니켈 나노박막다층 내 수직방향 이종금속 반응파 전파 해석연구)

  • Kim, Kyoungjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.1
    • /
    • pp.20-27
    • /
    • 2022
  • Present modeling study of nanoenergetics focuses on the numerical simulation of reaction wave propagation in normal direction across nanoscale multilayers of aluminum and nickel combination. The governing equations for atomic and thermal diffusion are employed in one-dimensional semi-infinitely alternating Al/Ni multilayered structures and the numerical results show the established patterns of quasi-steady intermetallic reaction waves. Also, the reaction wave speed is confirmed to be highly independent of reaction wave directions in such nanoenergetic structures.

Enhanced alizarin removal from aqueous solutions using zinc Oxide/Nickel Oxide nano-composite

  • Basma E. Jasim;Ali J. A. Al-Sarray;Rasha M. Dadoosh
    • Analytical Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.39-46
    • /
    • 2024
  • Alizarin dye, a persistent and hazardous contaminant in aquatic environments, presents a pressing environmental concern. In the quest for efficient removal methods, adsorption has emerged as a versatile and sustainable approach. This study focuses on the development and application of Zinc Oxide/Nickel Oxide (ZnO/NiO) nano-composites as adsorbents for alizarin dye removal. These semiconducting metal oxide nano-composites exhibit synergistic properties, offering enhanced adsorption capabilities. Key parameters affecting alizarin removal, such as contact time, adsorbent dosage, pH, and temperature, were systematically investigated. Notably, the ZnO/NiO nano-composite demonstrated superior performance, with a maximum alizarin removal percentage of 76.9 % at pH 6. The adsorption process followed a monolayer pattern, as suggested by the Langmuir model. The pseudo-second-order kinetics model provided a good fit to the experimental data. Thermodynamic analysis indicated that the process is endothermic and thermodynamically favorable. These findings underscore the potential of ZnO/NiO nano-composites as effective and sustainable adsorbents for alizarin dye removal, with promising applications in wastewater treatment and environmental remediation.

Morphology Construction of Molybdenum Doped Nickel Sulfide Electrocatalyst Induced by NH4F to Promote Hydrogen Evolution Reaction

  • Baikai Zhang;Xiaohui Li;Maochang Liu
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.353-364
    • /
    • 2024
  • Through component regulation and morphological construction, it is of considerable significance to develop high-activity and high-stability electrocatalyst for hydrogen evolution in electrolytic water. In the hydrothermal process, Mo-doped nickel-based sulfide catalysts (Mo-NiS-Fx) with a variety of morphologies (prisms, rods, flakes, and cones) were created by adding NH4F with varying masses. Among these, the flaky Mo-NiS-F1.2 exhibited exceptional performance towards electrochemical hydrogen evolution reaction, surpassing most similar catalysts with an overpotential of 79 mV at 10 mA cm-2 and a Tafel slope of 49.8 mV dec-1. Significantly, Mo-NiS-F1.2 maintained its high activity for hydrogen evolution over 60 h at a current density of 10 mA cm-2, making it suitable for widespread commercial application. According to the experimental findings, an electrocatalyst with a high surface area and a porous structure is better suited to exposing more gas transfer routes and active sites, which would encourage the hydrogen evolution reaction. This study presents a straightforward procedure for creating electrocatalysts with a range of morphologies, which can serve as a model for the creation of catalysts for use in industrial manufacturing.

DMAB Effects in Electroless Ni Plating for Flexible Printed Circuit Board (DMAB첨가량에 따른 연성회로기판을 위한 무전해 Ni 도금박막에 관한 연구)

  • Kim, Hyung-Chul;Rha, Sa-Kyun;Lee, Youn-Seoung
    • Korean Journal of Materials Research
    • /
    • v.24 no.11
    • /
    • pp.632-638
    • /
    • 2014
  • We investigated the effects of DMAB (Borane dimethylamine complex, C2H10BN) in electroless Ni-B film with addition of DMAB as reducing agent for electroless Ni plating. The electroless Ni-B films were formed by electroless plating of near neutral pH (pH 6.5 and pH 7) at $50^{\circ}C$. The electroless plated Ni-B films were coated on screen printed Ag pattern/PET (polyethylene terephthalate). According to the increase of DMAB (from 0 to 1 mole), the deposition rate and the grain size of electroless Ni-B film increased and the boron (B) content also increased. In crystallinity of electroless Ni-B films, an amorphization reaction was enhanced in the formation of Ni-B film with an increasing content of DMAB; the Ni-B film with < 1 B at.% had a weak fcc structure with a nano crystalline size, and the Ni-B films with > 5 B at.% had an amorphous structure. In addition, the Ni-B film was selectively grown on the printed Ag paste layer without damage to the PET surface. From this result, we concluded that formation of electroless Ni-B film is possible by a neutral process (~green process) at a low temperature of $50^{\circ}C$.

Low Resistivity Ohmic Ni/Si/Ni Contacts to N-Type 4H-SiC (낮은 접촉저항을 갖는 Ni/Si/Ni n형 4H-SiC의 오옴성 접합)

  • Kim C. K.;Yang S. J.;Cho N. I.;Yoo H. J.
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.10
    • /
    • pp.495-499
    • /
    • 2004
  • Characteristics of ohmic Ni/Si/Ni contacts to n-type 4H-SiC are investigated systematically. The ohmic contacts were formed by annealing Ni/Si/Ni sputtered sequentially The annealings were performed at 950℃ using RTP in vacuum ambient and N₂ ambient, respectively. The specific contact resistivity(p/sub c/), sheet resistance(R/sub s/), contact resistance (R/sub c/) transfer length(L/sub T/) were calculated from resistance(R/sub T/) versus contact spacing(d) measurements obtained from TLM(transmission line method) structure. While the resulting measurement values of sample annealed at vacuum ambient were p/sub c/ = 3.8×10/sup -5/Ω㎠, R/sub c/ = 4.9 Ω and R/sub T/ = 9.8 Ω, those of sample annealed at N₂ ambient were p/sub c/ = 2.29×10/sup -4/Ω㎠, R/sub c/ = 12.9 Ω and R/sub T/ = 25.8 Ω. The physical properties of contacts were examined using XRD 3nd AES. The results showed that nickel silicide was formed on SiC and Ni was migrated into SiC. This result indicates that Ni/Si/Ni ohmic contact would be useful in high performance electronic devices.

Microstructure and Properties of Squeeze Cast AC8A MMC Reinforced with Ni-aluminide (용탕단조한 Ni-aluminide 보강 AC8A기 복합재료의 조직 및 특성)

  • Joo, Dae-Heon;Kim, Myung-Ho;Kwun, Suk-In;Kim, Jun-Su
    • Journal of Korea Foundry Society
    • /
    • v.17 no.2
    • /
    • pp.195-206
    • /
    • 1997
  • AC8A matrix composites reinforced with Ni-aluminide were fabricated by squeeze casting process, and the characteristics and nature of the growth of Ni-aluminide phases at the interface between nickel and aluminurn were investigated. In the as-cast composites, the reaction layer between Ni skeleton and aluminum matrix was found to be $NiAl_3$, regardless of the casting temperatures and the kinds of preforms. During high temperature solution treatment the $NiAl_3$ layer grew and formed new $Ni_2Al_3$ layer. Because of presence of the porosity formed by Kirkendall effect at the interface between $NiAl_3$ and aluminum matrix, the tensile strength of composites was inferior to that of AC8A matrix alloy. However, the composites exhibited superior wear resistance due to the formation Ni-aluminide intermetallic phases. Composite A, of which Ni skeleton was fully transformed into Ni-aluminide, shows better wear resistance than that of composite B which still possessed some unreacted Ni skeleton.

  • PDF

Study of thermal stability of Ni Silicide using Ni-V Alloy

  • Zhong, Zhun;Oh, Soon-Young;Kim, Yong-Jin;Lee, Won-Jae;Zhang, Ying-Ying;Jung, Soon-Yen;Li, Shi-Guang;Kim, Yeong-Cheol;Wang, Jin-Suk;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.16-17
    • /
    • 2006
  • In this paper, Ni-V alloy was studied with different structures and thickness. In case of Ni-V and Ni-V/Co/TiN, low resistive Ni silicide was formed after one step RTP (Rapid Thermal Process) with temperature range from $400^{\circ}C$ to $600^{\circ}C$ for 30sec in vacuum. After furnace annealing with temperatures range from $550^{\circ}C$ to $650^{\circ}C$ for 30min in nitrogen ambient, Ni-V single structure shows the best thermal stability compare with the other ones. To enhance the thermal stability up to 650oC and find the optimal thickness of Ni silicide, different thickness of Ni-V was studied in this work. Stable sheet resistance was obtained through Ni-V single structure with optimal Ni-V thickness.

  • PDF

A Study on the Complexation of Nickel(II) Ion with 2-(2-Hydroxyethylamino)-2-(hydroxymethyl)-1,3-propanediol(Monotris) in Aqueous Solution (수용액 중에서 Ni(II) 이온과 2-(2-Hydroxyethylamino)-2-(hydroxymethyl)-1,3-propanediol(Monotris)과의 착물형성에 대한 연구)

  • Hong, Kyung-Hee;Shim, Seung-Bo;Oh, Seong-Geun;Chun, Yong-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5221-5231
    • /
    • 2010
  • The complex formation from Ni(II) ion and 2-(2-Hydroxyethylamino)-2-(hydroxymethyl)-1,3-propanediol(Monotris) in aqueous solution at $25^{\circ}C$ and at ionic strength of 0.10M has been studied potentiometrically. In the Monotris(L) comlex $NiL^{2+}$, hydroxyl oxygen atom as well as the amine nitrogen of the ligand are coordinated to the Ni(II) ion.. The complex $NiL^{2+}$ undergoes further dissociation as the pH is increased forming triply deprotonated dinuclear complex $Ni_2L_2H_{-3}^+$.

Growth Mechanism of Nickel Nanodispersoids during Consolidation of $Al_2O_3/Ni$ Nanocomposite Powder ($Al_2O_3/Ni$ 나노복합분말의 치밀화중 분산상 Ni의 성장기구)

  • ;;;;T. Sekino;K. Niihara
    • Journal of Powder Materials
    • /
    • v.7 no.4
    • /
    • pp.237-243
    • /
    • 2000
  • The property and performance of the $Al_2O_3/Ni$ nanocomposites have been known to strongly depend on the structural feature of Ni nanodispersoids which affects considerably the structure of matrix. Such nanodispersoids undergo structural evolution in the process of consolidation. Thus, it is very important to understand the microstructural development of Ni nanodispersoids depending on the structure change of the matrix by consolidation. The present investigation has focused on the growth mechanism of Ni nanodispersoids in the initial stage of sintering. $Al_2O_3/Ni$ powder mixtures were prepared by wet ball milling and hydrogen reduction of $Al_2O_3$ and Ni oxide powders. Microstructural development and the growth mechanism of Ni dispersion during isothermal sintering were investigated depending on the porosity and structure of powder compacts. The growth mechanism of Ni was discussed based upon the reported kinetic mechanisms. It is found that the growth mechanism is closely related to the structural change of the compacts that affect material transport for coarsening. The result revealed that with decreasing porosity by consolidation the growth mechanism of Ni nanoparticles is changed from the migration-coalescence process to the interparticle transport mechanism.

  • PDF

Electrophoretic Deposition for the Growth of Carbon nanofibers on Ni-Cu/C-fiber Textiles

  • Nam, Ki-Mok;Mees, Karina;Park, Ho-Seon;Willert-Porada, Monika;Lee, Chang-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2431-2437
    • /
    • 2014
  • In this study, Ni, Ni-Cu and Ni/Cu catalysts were deposited onto C-fiber textiles via the electrophoretic deposition method, and the growth characteristics of carbon nanofibers on the deposited catalyst/C-fiber textiles were investigated. The catalyst deposition onto C-fiber textiles was accomplished by immersing the C-fiber textiles into Ni or Ni-Cu mixed solutions, producing the substrate by post-deposition of Ni onto C-fiber textiles with pre-deposited Cu, and passing it through a gas mixture of $N_2$, $H_2$ and $C_2H_4$ at $700^{\circ}C$ to synthesize carbon nanofibers. For analysis of the characteristics of the synthesized carbon nanofibers and the deposition pattern of catalysts, SEM, EDS, BET, XRD, Raman and XPS analysis were conducted. It was found that the amount of catalyst deposited and the ratio of Ni deposition in the Ni-Cu mixed solution increased with an increasing voltage for electrophoretic deposition. In the case of post-deposition of Ni catalyst onto substrates with pre-deposited Cu, both bimetallic catalyst and carbon nanofibers with a high level of crystallizability were produced. Carbon nanofibers yielded with the catalyst prepared in Ni and Ni-Cu mixed solutions showed a Y-shaped morphology.