DOI QR코드

DOI QR Code

DMAB Effects in Electroless Ni Plating for Flexible Printed Circuit Board

DMAB첨가량에 따른 연성회로기판을 위한 무전해 Ni 도금박막에 관한 연구

  • Kim, Hyung-Chul (Department of Materials Engineering, Hanbat National University) ;
  • Rha, Sa-Kyun (Department of Materials Engineering, Hanbat National University) ;
  • Lee, Youn-Seoung (Department of Information & Communication Engineering, Hanbat National University)
  • 김형철 (한밭대학교 재료공학과) ;
  • 나사균 (한밭대학교 재료공학과) ;
  • 이연승 (한밭대학교 정보통신공학과)
  • Received : 2014.08.05
  • Accepted : 2014.10.14
  • Published : 2014.11.27

Abstract

We investigated the effects of DMAB (Borane dimethylamine complex, C2H10BN) in electroless Ni-B film with addition of DMAB as reducing agent for electroless Ni plating. The electroless Ni-B films were formed by electroless plating of near neutral pH (pH 6.5 and pH 7) at $50^{\circ}C$. The electroless plated Ni-B films were coated on screen printed Ag pattern/PET (polyethylene terephthalate). According to the increase of DMAB (from 0 to 1 mole), the deposition rate and the grain size of electroless Ni-B film increased and the boron (B) content also increased. In crystallinity of electroless Ni-B films, an amorphization reaction was enhanced in the formation of Ni-B film with an increasing content of DMAB; the Ni-B film with < 1 B at.% had a weak fcc structure with a nano crystalline size, and the Ni-B films with > 5 B at.% had an amorphous structure. In addition, the Ni-B film was selectively grown on the printed Ag paste layer without damage to the PET surface. From this result, we concluded that formation of electroless Ni-B film is possible by a neutral process (~green process) at a low temperature of $50^{\circ}C$.

Keywords

References

  1. J. W. Yoon, M. K. Ko, B. I. Noh and S. B. Jung, Microelectron. Reliab., 53(12), 2036 (2013). https://doi.org/10.1016/j.microrel.2013.06.007
  2. S. E. Huang and W. P. Dow, Microsystems Packaging Assembly and Circuits technology Conference (IMPACT, Taipei), 1-4 (2010).
  3. S. H. Park and D. N. Lee, J. Mater. Sci., 23(5), 1643 (1988). https://doi.org/10.1007/BF01115703
  4. Y. R. Cho, Y. S. Lee and S. K. Rha, J. Kor. Mater. Res., 23(11), 661 (2013). https://doi.org/10.3740/MRSK.2013.23.11.661
  5. Karthikeyan and B. Ramamoorthy, Surf. Sci., 307, 654 (2014). https://doi.org/10.1016/j.apsusc.2014.04.092
  6. David A. Hutt, Changqing Liu, Paul P. Conway, David C. Whalley and Samjid H. Mannan, IEEE Trans. Compon. Packag. Technol., 25(1), 87 (2002). https://doi.org/10.1109/6144.991180
  7. T. S. N. Sankara Narayanan, K. Krishnaveni and S. K. Seshadri, Mater. Chem. Phys., 82(3), 771 (2003). https://doi.org/10.1016/S0254-0584(03)00390-0
  8. I. Baskaran, R. Sakthi Kumar, T.S.N. Sankara Narayanan and A. Stephen, J. Coat. Technol. Res., 200(24), 6888 (2006). https://doi.org/10.1016/j.surfcoat.2005.10.013
  9. S. Kalyan Das and P. Sahoo, Adv. Mechanic. Eng., 2012, Article ID 703168,11 page (2012).
  10. F. Delaunois, J. P. Petitjean, P. Lienard and M. Jacob-Duliere, Surf. Coat. Technol., 124, 201 (2000). https://doi.org/10.1016/S0257-8972(99)00621-0
  11. H. Ogihara, K. Udagawa and T. Saji, Surf. Coat. Technol., 206, 2933 (2012). https://doi.org/10.1016/j.surfcoat.2011.12.025
  12. K. Krishnaveni, T. S. N. Sankara Narayanan and S. K. Seshadri, Surf. Coat. Technol., 190(1), 115 (2005). https://doi.org/10.1016/j.surfcoat.2004.01.038
  13. I. Baskaran, R. Sakthi Kumar, T. S. N. Sankara Narayanan and A. Stephen, Surf. Coat. Technol., 200(24), 6888 (2006). https://doi.org/10.1016/j.surfcoat.2005.10.013
  14. C. R. Lee, H. D. Park, S. G. Kang, J. Kor. Inst. Surf. Eng., 32, 172(1999).
  15. S. S. Noh, M. Thesis (in Korean), Hanbat University, Daejon (2013).
  16. L. Tarkowski, P. Indyka and E. Be towska-Lehman, Nucl. Instrum. Methods Phys. Res., 284, 40 (2012). https://doi.org/10.1016/j.nimb.2011.07.108
  17. J. Shao, X. Xiao, X. Fan, L. Chen, H. Zhu, S. Yu, Z. Gong, S. Li, H. Ge and Q. Wang, Mater. Lett., 109, 203 (2013). https://doi.org/10.1016/j.matlet.2013.07.076
  18. M. Tsujimura, H. Inoue, H. Ezawa, M. Miyata and M. Ota, Mater. Trans., 43(7), 1615 (2002). https://doi.org/10.2320/matertrans.43.1615

Cited by

  1. Etchless Fabrication of Cu Circuits Using Wettability Modification and Electroless Plating vol.25, pp.11, 2015, https://doi.org/10.3740/MRSK.2015.25.11.622