• Title/Summary/Keyword: Nickel (Ni)

Search Result 1,524, Processing Time 0.028 seconds

THE CHANGE OF CANAL CONFIGURATION AFTER INSTRUMENTATION BY SEVERAL NICKEL-TITANIUM FILES IN THE SIMULATED CANAL WITH ABRUPT CURVATURE (수종의 엔진구동형 니켈-타이타늄 파일에 의한 급한 만곡의 근관 성형시 근관형태 변화에 대한 비교연구)

  • Lim, Jung-Jang;Kim, Dong-Jun;Hwang, Yun-Chan;Hwang, In-Nam;Oh, Won-Mann
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.4
    • /
    • pp.303-311
    • /
    • 2005
  • The purpose of this study was to evaluate which type of Ni-Ti files are able to maintain canal configuration better in the simulated canal with abrupt curvature near it's apex. Ninety six simulated root canals were made in epoxy resin and $\sharp$15 finger spreader was used as root canal templates. The simulated root canals were made with radius of curvature of 1.5mm, 3.0mm, 4.0mm, 6.0mm respectively and the angle of curvature of all simulated canals were adjusted to 90 degree. The simulated canals were instrumented by ProFile, ProTaper, Hero 642, and $K^3$ at a 300 rpm using crown-down pressureless technique. Pre-instrumented and post-instrumented images were taken by digital camera and were superimposed with Adobe Photos hop 6.0 program. Images were compared by image analysis program. The changes of canal width at the inner and outer side of the canal curvature. canal transportation were measured at 9 measuring point with 1 mm interval. Statistical analysis among the types of Ni-Ti files was performed using Kruskal-Wallis test and Mann-Whitney U-test. The result was that ProFile maintain original canal configuration better than other engine driven Ni-Ti files in the canals above 3.0mm radius of curvature, and in the 1.5mm radius of curvature, most of Ni-Ti flies were deformed or separated during instrumentation.

Design of Pretreatment Process of Lead Frame Etching Wastes Using Reduction-Oxidation Method (환원-산화법을 이용한 리드프레임 에칭폐액의 정제과정 설계)

  • Lee, Seung Bum;Jeon, Gil Song;Jung, Rae Yoon;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.21-25
    • /
    • 2016
  • When copper alloy is used in etching process for the production of lead frame, the high concentration of heavy metals, such as iron, nickel and zinc may be included in the etching waste. Those etching waste is classified as a specified one. Therefore a customized design was designed for the purification process of the lead frame etching waste liquid containing high concentrations of heavy metals for the production of an electroplating copper(II) oxide. Since the lead frame etching waste solution contains highly concentrated heavy metal species, an ion exchange method is difficult to remove all heavy metals. In this study, a copper(I) chloride was manufactured by using water solubility difference related to the reduction-oxidation method followed by the reunion of copper(II) chloride using sodium sulfate as an oxidant. The hydrazine was chosen as a reducing agent. The optimum added amount was 1.4 mol per 1.0 mol of copper. In the case of removal of heavy metals by using the combination of reduction-oxidation and ion exchange resin methods, 4.3 ppm of $Fe^{3+}$, 2.4 ppm of $Ni^{2+}$ and 0.78 ppm of $Zn^{2+}$ can be reused as raw materials for electroplating copper(II) oxide when repeated three times.

Selective Leaching Process of Precious Metals (Au, Ag, etc.) from Waste Printed Circuit Boards (PCBs) (廢 PCBs부터 귀금속(Au, Ag 등)의 선택적 침출공정)

  • 오치정;이성오;국남표;김주환;김명준
    • Resources Recycling
    • /
    • v.10 no.5
    • /
    • pp.29-35
    • /
    • 2001
  • This study was carried out to recover gold, silver and valuable metals from the printed circuit boards (PCBs) of waste computers. PCBs samples were crushed under 1 mm by a shredder and separated into 30% conducting and loft nonconducting materials by an electrostatic separator. The conducting materials contained valuable metals which were then used as feed materials for magnetic separation. 42% of magnetic materials from the conducting materials was removed by magnetic separation as nonvaluable materials and the others, 58% of non magnetic materials, was used as leaching samples containing 0.227 mg/g Au and 0.697 mg/g Ag. Using the materials of leaching from magnetic separation, more than 95% of copper, iron, zinc, nickel and aluminium was dissolved in 2.0M sulfuric acid solution, added with 0.2M hydrogen peroxide at $85^{\circ}C$. Au and Ag were not extracted in this solution. On the other hand, more than 95% of gold and 100% of silver were leached by the selective leaching with a mixed solvent (0.2M($NH_4$)$_2$$S_2$$O_3$,0.02M $CuSO_4$,0.4M $NH_4$OH). Finally, the residues were reacted with a NaCl solution to leach Pb whereas sulfuric acid was used to leach Sn. Recoveries reached 95% and 98% in solution, respectively.

  • PDF

Modeling of the charge and discharge behavior of the 2S2P(2 series-2 parallel) AGM battery system for commercial vehicles (상용자동차용 직·병렬 AGM 배터리 시스템의 충·방전 거동 모델링)

  • Lee, Jeongbin;Kim, Ui Seong;Yi, Jae-Shin;Shin, Chee Burm
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.346-355
    • /
    • 2012
  • Recent in the world environmental issues and energy depletion problems have been received attention. One way to solve these problems is to use hybrid electric vehicles (HEVs). Therefore, the interest in HEV technology is higher than ever before. Viable candidates for the energy-storage systems in HEV applications may be absorbent glass mat (AGM) lead-acid, nickel-metal-hydride (Ni-MH) and rechargeable lithium batteries. The AGM battery has advantages in terms of relatively low cost, high charge efficiency, low self-discharge, low maintenance requirements and safety as compared to the other batteries. In order to implement HEV system in required more electric power commercial vehicles AGM batteries was connected to 2 series-2 parallels (2S2P). In this study, a one-dimensional modeling is carried-out to predict the behaviors of 2S2P AGM batteries system during charge and discharge. The model accounts for electrochemical reaction rates, charge conservation and mass transport. In order to validate the model, modeling results are compared with the experimentally measured data in various conditions.

Expression and Biochemical Characteristics of a Phospholipase D from Bacillus licheniformis (Bacillus licheniformis로부터 분리된 phospholipase D 유전자의 발현 및 생화학 특성)

  • Kang, Han-Chul;Yoon, Sang-Hong;Lee, Chang-Muk;Koo, Bon-Sung
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.2
    • /
    • pp.94-100
    • /
    • 2011
  • A gene encoding a putative phospholipase D was isolated from Bacillus licheniformis and cloned into pGEM-T easy vector. The gene was expressed in E. coli BL21 (DE3) using a pET-21(a) vector containing His6 tag. Affinity purification of the recombinant phospholipase D with nickel-nitrilotriacetic acid (Ni-NTA) resin resulted major one-band by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The purified enzyme showed a molecular weight of 44 kDa. The optimum activity of enzyme was around pH 7.0 and the enzyme was also the most stable around this condition. The optimum temperature was about $40-45^{\circ}C$ and the enzyme still showed considerable activities at wide range of temperature. Among various detergents, Triton X-100 significantly increased the enzyme activity, resulting in 181% activity of control at 0.6 mM of the detergent. Calcium ion did not significantly affect the enzyme activity, suggesting that the enzyme might be classified into $Ca^{2+}$-independent PLD.

In Vitro Expression and Antibody Preparation of Rice black-streaked dwarf virus Coat Protein Gene (벼검은줄오갈병바이러스 외피단백질 유전자 단백질 발현과 항혈청 제작)

  • Lee, Bong Choon;Cho, Sang-Yun;Bae, Ju Young;Kim, Sang Min;Shin, Dong Bum;Kim, Sun Lim
    • Research in Plant Disease
    • /
    • v.22 no.1
    • /
    • pp.32-37
    • /
    • 2016
  • In this work, major outer capsid protein (P10) encoded by genome segment S10 of Rice black-streaked dwarf virus (RBSDV) was expressed in Escherichia coli. Genomic dsRNA was extracted from RBSDV-miryang isolate infected rice plants. Based on the sequence of S10 (RBSDV-miryang, GenBank JX994211), a pair of S10 specific primers were designed and used to amplify the fragment encoding the N-part of P10. We amplified the partial gene (S10 1-834 nt) of RBSDV P10 (1-278 aa) by RT-PCR. Amplified RBSDV S10 (1-834 nt) was cloned into the expression vector pET32a (+). Recombinant RBSDV S10 (1-834 nt) was expressed in E. coli BL21(DE3) and purified by nickel-nitrilotriacetic acid (Ni-NTA) affinity column. We successfully obtained P10 partial protein of RBSDV and the purified protein was used to immunize rabbits. The resulting polyclonal antiserum specifically recognized RBSDV from infected plant in both Western blotting and enzyme-linked immunosorbent assay. In this study, we provide purified RBSDV P10 (1-278 aa), which would be good material for the serological study of RBSDV-miryang isolates.

Interfacial Reaction and Joint Strength of the Sn-58Bi Solder Paste with ENIG Surface Finished Substrate (Sn-58Bi 솔더 페이스트와 ENIG 표면 처리된 기판 접합부의 계면 반응 및 접합강도)

  • Shin, Hyun-Pil;Ahn, Byung-Wook;Ahn, Jee-Hyuk;Lee, Jong-Gun;Kim, Kwang-Seok;Kim, Duk-Hyun;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.30 no.5
    • /
    • pp.64-69
    • /
    • 2012
  • Sn-Bi eutectic alloy has been widely used as one of the key solder materials for step soldering at low temperature. The Sn-58Bi solder paste containing chloride flux was adopted to compare with that using the chloride-free flux. The paste was applied on the electroless nickel-immersion gold (ENIG) surface finish by stencil printing, and the reflow process was then performed at $170^{\circ}C$ for 10 min. After reflow, the solder joints were aged at $125^{\circ}C$ for 100, 200, 300, 500 and 1000 h in an oven. The interfacial microstructures were obtained by using scanning electron microscopy (SEM), and the composition of intermetallic compounds (IMCs) was analyzed using energy dispersive spectrometer (EDS). Two different IMC layers, consisting of $Ni_3Sn_4$ and relatively very thin Sn-Bi-Ni-Au were formed at the solder/surface finish interface, and their thickness increased with increasing aging time. The wettability of solder joints was investigated by wetting balance test. The mechanical property of each aging solder joint was evaluated by the ball shear test in accordance with JEDEC standard (JESD22-B117A). The results show that the highest shear force was measured when the aging time was 100 h, and the fracture mode changed from ductile fracture to brittle fracture with increasing aging time. On the other hand, the chloride flux in the solder paste did not affect the shear force and fracture mode of the solder joints.

Nano-scale Design of electrode materials for lithium rechargeable batteries

  • Gang, Gi-Seok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.72-72
    • /
    • 2012
  • Lithium rechargeable batteries have been widely used as key power sources for portable devices for the last couple of decades. Their high energy density and power have allowed the proliferation of ever more complex portable devices such as cellular phones, laptops and PDA's. For larger scale applications, such as batteries in plug-in hybrid electric vehicles (PHEV) or power tools, higher standards of the battery, especially in term of the rate (power) capability and energy density, are required. In PHEV, the materials in the rechargeable battery must be able to charge and discharge (power capability) with sufficient speed to take advantage of regenerative braking and give the desirable power to accelerate the car. The driving mileage of the electric car is simply a function of the energy density of the batteries. Since the successful launch of recent Ni-MH (Nickel Metal Hydride)-based HEVs (Hybrid Electric Vehicles) in the market, there has been intense demand for the high power-capable Li battery with higher energy density and reduced cost to make HEV vehicles more efficient and reduce emissions. However, current Li rechargeable battery technology has to improve significantly to meet the requirements for HEV applications not to mention PHEV. In an effort to design and develop an advanced electrode material with high power and energy for Li rechargeable batteries, we approached to this in two different length scales - Atomic and Nano engineering of materials. In the atomic design of electrode materials, we have combined theoretical investigation using ab initio calculations with experimental realization. Based on fundamental understanding on Li diffusion, polaronic conduction, operating potential, electronic structure and atomic bonding nature of electrode materials by theoretical calculations, we could identify and define the problems of existing electrode materials, suggest possible strategy and experimentally improve the electrochemical property. This approach often leads to a design of completely new compounds with new crystal structures. In this seminar, I will talk about two examples of electrode material study under this approach; $LiNi_{0.5}Mn_{0.5}O_2$ based layered materials and olivine based multi-component systems. In the other scale of approach; nano engineering; the morphology of electrode materials are controlled in nano scales to explore new electrochemical properties arising from the limited length scales and nano scale electrode architecture. Power, energy and cycle stability are demonstrated to be sensitively affected by electrode architecture in nano scales. This part of story will be only given summarized in the talk.

  • PDF

Study on Material Characteristic of Modern Cultural Heritage Rickshaw (근·현대문화재 인력거 재질분석 연구)

  • Kim, Soo Chul;Choi, Jae Wan;Lee, Jee Eun
    • Journal of Conservation Science
    • /
    • v.32 no.1
    • /
    • pp.33-42
    • /
    • 2016
  • Modern cultural heritage were made with various materials. But there are no certain analysis for modern cultural heritage. Analysis on rickshaw from National Museum of Korean Contemporary History were carried out using P-XRF, species identification, paint film analysis, FT-IR and microscope observation. As a result Copper and Zinc were measured in metal parts. Nickel alloys were first used in the modern era for rickshaw. Wooden parts, Oak(Quercus spp.), bamboo(Phyllostachys spp.) and Hinoki cypress(Chamaecyparis spp.) were identified. Outer films were painted by 5 layers and inner films were painted by 3 layers. More simple painting process were performed on the inner part. Cotton and wool were identified by FT-IR. Also, cowhide were identified. Authenticity conservation and restoration could be carried out with the results.

STRESS DISTRIBUTION FOR NITI FILES OF TRIANGULAR BASED AND RECTANGULAR BASED CROSS-SECTIONS USING 3-DIMENSIONAL FINITE ELEMENT ANALYSIS (만곡 근관에서 삼각 혹은 장방형 단면 구조의 니켈-티타늄 파일 응력 분포에 관한 3차원 유한요소 연구)

  • Kim, Hyun-Ju;Lee, Chan-Joo;Kim, Byung-Min;Park, Jeong-Kil;Hur, Bock;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • The purpose of this study was to compare the stress distributions of NiTi rotary instruments based on their cross-sectional geometries of triangular shape-based cross-sectional design, S-shaped cross-sectional design and modified rectangular shape-based one using 3D FE models. NiTi rotary files of S-shaped and modified rectangular design of cross-section such as Mtwo or NRT showed larger stress change while file rotation during simulated shaping. The stress of files with rectangular cross-section design such as Mtwo, NRT was distributed as an intermittent pattern along the long axis of file. On the other hand, the stress of files with triangular cross-section design was distributed continuously. When the residual stresses which could increase the risk of file fatigue fracture were analyzed after their withdrawal. the NRT and Mtwo model also presented higher residual stresses. From this result, it can be inferred that S-shaped and modified rectangular shape-based files were more susceptible to file fracture than the files having triangular shape-based one.