DOI QR코드

DOI QR Code

STRESS DISTRIBUTION FOR NITI FILES OF TRIANGULAR BASED AND RECTANGULAR BASED CROSS-SECTIONS USING 3-DIMENSIONAL FINITE ELEMENT ANALYSIS

만곡 근관에서 삼각 혹은 장방형 단면 구조의 니켈-티타늄 파일 응력 분포에 관한 3차원 유한요소 연구

  • Kim, Hyun-Ju (Department of Conservative Dentistry, School of Dentistry) ;
  • Lee, Chan-Joo (Division of Precision Manufacturing Systems, Pusan National University) ;
  • Kim, Byung-Min (Division of Precision Manufacturing Systems, Pusan National University) ;
  • Park, Jeong-Kil (Department of Conservative Dentistry, School of Dentistry) ;
  • Hur, Bock (Department of Conservative Dentistry, School of Dentistry) ;
  • Kim, Hyeon-Cheol (Department of Conservative Dentistry, School of Dentistry)
  • 김현주 (부산대학교 치의학전문대학원 치과보존학교실) ;
  • 이찬주 (부산대학교 공과대학 기계공학부) ;
  • 김병민 (부산대학교 공과대학 기계공학부) ;
  • 박정길 (부산대학교 치의학전문대학원 치과보존학교실) ;
  • 허복 (부산대학교 치의학전문대학원 치과보존학교실) ;
  • 김현철 (부산대학교 치의학전문대학원 치과보존학교실)
  • Published : 2009.01.30

Abstract

The purpose of this study was to compare the stress distributions of NiTi rotary instruments based on their cross-sectional geometries of triangular shape-based cross-sectional design, S-shaped cross-sectional design and modified rectangular shape-based one using 3D FE models. NiTi rotary files of S-shaped and modified rectangular design of cross-section such as Mtwo or NRT showed larger stress change while file rotation during simulated shaping. The stress of files with rectangular cross-section design such as Mtwo, NRT was distributed as an intermittent pattern along the long axis of file. On the other hand, the stress of files with triangular cross-section design was distributed continuously. When the residual stresses which could increase the risk of file fatigue fracture were analyzed after their withdrawal. the NRT and Mtwo model also presented higher residual stresses. From this result, it can be inferred that S-shaped and modified rectangular shape-based files were more susceptible to file fracture than the files having triangular shape-based one.

이 연구의 목적은 3차원 유한요소 모형 분석을 이용하여 삼각 대칭형과 5형태의 단면 및 변형된 사각 형태인 장방형 단면으로 분류되는 네 종류의 니켈티타늄 파일이 만곡 근관 적용 시의 응력 분포를 비교하는 것이다. 삼각 대칭형 단면 구조의 ProFile #30 / .06과 Heroshaper #30 / .06, 장방형 단면구조의 Mtwo #30 / .05와 NRT #30/ .06 파일을 마이크로컴퓨터 단층촬영을 하고 reverse engineering을 통하여 파일의 구조를 얻고 삼차원 유한요소모형을 제작하였다. 모형 근관 내에서 파일이 근관장끝까지 진입하여 회전할 때 발생하는von Mises 응력 분포 및 파일의 제거후의 잔류 음력의 분포양상을 ABAQUS 프로그램을 이용하여 비교하였다. 근관 내 회전 시에 발생하는 응력을 관찰하였을 때 NRT 파일에서 가장 큰 응력을 나타냈으며, 각 파일에서의 최고 응력과 최저 응력을 비교하였을 때 Mtwo파일에서 가장 큰 차이가 나타났다. 응력의 내부 분포 경향을 보았을 때 장방형 구조의 단면을 가진 Mtwo 및 NRT 파일에서 불연속적인 응력의 집중 부위가 관찰되었으며, 근관 외부로 파일을 제거하여 탄성 회복이 일어난 후의 잔류 응력도 NRT 파일에서 가장 높게 나타났다. 이상의 결과로 유추할 때, 삼각대칭 단면 구조를 가진 파일보다 S-형태의 단면과 변형된 사각 형태의 단면 등의 장방형 단면 구조의 파일이 파절의 위험성이 더 클 것으로 사료된다.

Keywords

References

  1. Sattapan B, Nervo GJ, Palamara JE, Messer HH. Defects in rotary nickel-titanium files after clinical use. J Endod 26(3):161-165, 2000 https://doi.org/10.1097/00004770-200003000-00008
  2. Peters OA. Current challenges and concepts in the preparation of root canal systems: a review. J Endod 30(8):559-567, 2004 https://doi.org/10.1097/01.DON.0000129039.59003.9D
  3. Averbach RE, Kleier DJ. Endodontics in the 21st century: the rotary revolution. Compend Contin Educ Dent 22(1):27-34, 2001
  4. Yao JH, Schwartz SA, Beeson TJ. Cyclic fatigue of three types of rotary nickel-titanium files in a dynamic model. J Endod 32(1):55-57, 2006 https://doi.org/10.1016/j.joen.2005.10.013
  5. Pruett JP, Clement DJ, Carnes DL. Cyclic fatigue testing of nickel titanium endodontic instruments. J Endod 23(2):77-85, 1997 https://doi.org/10.1016/S0099-2399(97)80250-6
  6. Turpin YL, Chagneau F, Vulcain JM. Impact of two theoretical cross-sections on torsional and bending stresses of nickel-titanium root canal instrument models. J Endod 26(7):414-417, 2000 https://doi.org/10.1097/00004770-200007000-00009
  7. Camps JJ, Pertot WJ, Levallois B. Relationship between file size and stiffness of nickel titanium instruments. Endod Dent Traumatol 11(6):270-273, 1995 https://doi.org/10.1111/j.1600-9657.1995.tb00502.x
  8. Camps JJ, Pertot WJ. Relationship between file size and stiffness of stainless steel instruments. Endod Dent Traumatol 10(6):260-263, 1994 https://doi.org/10.1111/j.1600-9657.1994.tb00081.x
  9. Kazemi RB, Stenman E, Spangberg LS. A comparison of stainless steel and nickel-titanium H-type instruments of identical design: torsional and bending tests. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 90(4):500-506, 2000 https://doi.org/10.1067/moe.2000.108959
  10. Schafer E, Tepel J. Relationship between design features of endodontic instruments and their properties. Part 3. Resistance to bending and fracture. J Endod 27(4):299-303, 2001 https://doi.org/10.1097/00004770-200104000-00018
  11. Grande NM, Plotino G, Pecci R, Bedini R, Malagnino VA, Somma F. Cyclic fatigue resistance and threedimensional analysis of instruments from two nickeltitanium rotary systems. Int Endod J 39(10):755-763, 2006 https://doi.org/10.1111/j.1365-2591.2006.01143.x
  12. Shen Y, Bian Z, Cheung GS, Peng B. Analysis of defects in ProTaper hand-operated instruments after clinical use. J Endod 33(3):287-290, 2007 https://doi.org/10.1016/j.joen.2006.09.009
  13. Lopes HP, Moreira EJ, Elias CN, de Almeida RA, Neves MS. Cyclic fatigue of ProTaper instruments. J Endod 33(1):55-57, 2007 https://doi.org/10.1016/j.joen.2006.09.003
  14. Berutti E, Chiandussi G, Gaviglio I, Ibba A. Comparative analysis of torsional and bending stresses in two mathematical models of nickel-titanium rotary instruments: ProTaper versus ProFile. J Endod 29(1):15-19, 2003 https://doi.org/10.1097/00004770-200301000-00005
  15. Xu X, Eng M, Zheng Y, Eng D. Comparative study of torsional and bending properties for six models of nickel-titanium root canal instruments with different crosssections. J Endod 32(4):372-375, 2006 https://doi.org/10.1016/j.joen.2005.08.012
  16. Turpin YL, Chagneau F, Vulcain JM. Impact of two theoretical cross-sections on torsional and bending stresses of nickel-titanium root canal instrument models. J Endod 26(7):414-417, 2000 https://doi.org/10.1097/00004770-200007000-00009
  17. Wang GZ. A finite element analysis of evolution of stress-strain and martensite transformation in front of a notch in shape memory alloy NiTi. Mater Sci Eng A 460-461:383-391, 2007 https://doi.org/10.1016/j.msea.2007.01.154
  18. Walia H, Brantley WA, Gerstein H. An initial investigation of the bending and torsional properties of Nitinol root canal files. J Endod 14(7):346-351, 1988 https://doi.org/10.1016/S0099-2399(88)80196-1
  19. Glosson CR, Haller RH, Dove SB, del Rio CE. A comparison of root canal preparations using Ni-Ti hand, Ni-Ti engine-driven, and K-Flex endodontic instruments. J Endod 21(3):146-151, 1995 https://doi.org/10.1016/S0099-2399(06)80441-3
  20. Schafer E, Schulz-Bongert U, Tulus G. Comparison of hand stainless steel and nickel titanium rotary instrumentation: a clinical study. J Endod 30(6):432-435, 2004 https://doi.org/10.1097/00004770-200406000-00014
  21. Chen JL, Messer HH. A comparison of stainless steel hand and rotary nickel-titanium instrumentation using a silicone impression technique. Aust Dent J 47(1):12-20, 2002 https://doi.org/10.1111/j.1834-7819.2002.tb00297.x
  22. Garip Y, Gunday M. The use of computed tomography when comparing nickel-titanium and stainless steel files during preparation of simulated curved canals. Int Endod J 34(6):452-457, 2001 https://doi.org/10.1046/j.1365-2591.2001.00416.x
  23. Fife D, Gambarini G, Britto Lr L. Cyclic fatigue testing of ProTaper NiTi rotary instruments after clinical use. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97(2):251-256, 2004 https://doi.org/10.1016/j.tripleo.2003.08.010
  24. Schrader C, Peters OA. Analysis of torque and force with differently tapered rotary endodontic instruments in vitro. J Endod 31(2):120-123, 2005 https://doi.org/10.1097/01.don.0000137634.20499.1d
  25. Schafer E, Diez C, Hoppe W, Tepel J. Roentgenographic investigation of frequency and degree of canal curvatures in human permanent teeth. J Endod 28(3):211-216, 2002 https://doi.org/10.1097/00004770-200203000-00017
  26. Martin B, Zelada G, Varela P. Factors influencing the fracture of nickel-titanium rotary instruments. Int Endod J 36(4):262-266, 2003 https://doi.org/10.1046/j.1365-2591.2003.00630.x
  27. Lee JK, Kim ES, Kang MW, Kum KY. The effect of surface defects on the cyclic fatigue fracture of HERO shaper Ni-Ti rotary files in a dynamic model: A fractographic analysis. J Kor Acad Cons Dent 32:130-136, 2007 https://doi.org/10.5395/JKACD.2007.32.2.130
  28. Schofer E, Dzepina A, Danesh G. Bending properties of rotary nickel-titanium instruments. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 96(6):757-763, 2003 https://doi.org/10.1016/S1079-2104(03)00358-5
  29. Kim HC, Cheung GS, Lee CJ, Kim BM, Park JK, Kang SI. Comparison of forces generated during root canal shaping and residual stresses of three nickel-titanium rotary files by using a three-dimensional finite-element analysis. J Endod 34(6):743-747, 2008 https://doi.org/10.1016/j.joen.2008.03.015
  30. Hayashi Y. Phase transformation behaviour and bending properties of hybrid nickel-titanium rotary endodontic instruments. Int Endod J 40(4):247-253, 2007 https://doi.org/10.1111/j.1365-2591.2007.01203.x
  31. Kuhn G, Tavernier B, Jordan L. Influence of structure on nickel-titanium endodontic instruments failure. J Endod 27(8):516-520, 2001 https://doi.org/10.1097/00004770-200108000-00005
  32. Di Fiore PM. A dozen ways to prevent nickel-titanium rotary instrument fracture. J Am Dent Assoc 138(2):196-201, 2007

Cited by

  1. Analysis of crystalline structure of autogenous tooth bone graft material: X-Ray diffraction analysis vol.37, pp.3, 2011, https://doi.org/10.5125/jkaoms.2011.37.3.225