• Title/Summary/Keyword: NiTiCu

Search Result 307, Processing Time 0.026 seconds

Rate of Sediment Accumulation and Geochemical Characteristics of Muddy Sediment in the Central Yellow Sea (황해 중앙부 해역 니질 퇴적물의 지화학적 특성 및 퇴적률)

  • 윤정수;김여상
    • The Korean Journal of Quaternary Research
    • /
    • v.16 no.1
    • /
    • pp.1-16
    • /
    • 2002
  • A total of 4 muddy sediment samples collected from the Central Yellow Sea were analyzed for chemical composition. The results are compared with the previously published Huanghe, Changjiang and Keum River geochemical data in order to understand provenance and sedimentation of fine-grained mud, and the sediment accumulation rates estimated. The sandy sediment facies is distributed in the eastern area, a patch of fine-grained mud exists in the western central prat, and the sandy mud and clay sedimentary facies shot. north to south zonal distribution in the central region. The content of calcium carbonate ranges from 2.8 to 10.5%, and its distributional trends to be more concentrated on the western muddy sediments near toward the China side rather than on the eastern sandy sediments. The accumulation rates obtained using Pb-210 geochronologies for the muddy sediments in the Central Yellow Sea showed ranges from 0.21 to 0.68 cm/yr or 0.176 to 0.714 g/$\textrm{cm}^2$. yr. The sedimentation rate from core CY96010 located in the eastern near side of Shandong Peninsula which is affected by the Huanghe River shows 0.68 cm/yr or 0.714 g/$\textrm{cm}^2$ . yr. The sediment cores CY96008 and CY96002 in the Central Yellow Sea, the estimated of sediment accumulation rates shows 0.21~0.23cm1yr or 0.176~0.220 9/$\textrm{cm}^2$.Vr respectively, which are much lower than above samples. These indicate that the muddy sediments in central area of the Yellow Sea may have received influence of the sediment discharge from the Huanghe River. The concentrations of Ca, Na, Sr, Ho, La, Tb, Ta and Ca/Ti ratio of the muddy sediments in the Central Yellow Sea are higher than those of the Changjiang sediments and lower than those of the Huanghe sediments. However, these element values showed similar concentration patterns than those of the Huanghe sediment. The element contents such as Fe, Ti, Nl, Co, Cr, Cu, Pb, Sc, Ce, Nd, Sm, Eu, Cd and Dy in the study area are higher than those of the Huanghe sediments and lower than the Changjiang River sediments, but these values showed close to resemblance content trends those of the Changjiang sediment. The concentration of Mn, K and Sr in sediments of the study area are similar to those of the Keum River and eastern Yellow Sea sediment. They are rich in Zn, Rb, Cd, U, Cs and Li than those of the other comparison legions. Therefore, the terrigenous materials sources of the muddy sediment in the Central Yellow Sea comes mainly from Huanghe River in the past and present, and also have party derived from the Changjiang and Keum River, while the biological deposit in this area are carried by the Yellow Sea Warm Current.

  • PDF

Source Identification of Ambient PM-10 Using the PMF Model (PMF 모델을 이용한 대기 중 PM-10 오염원의 확인)

  • 황인조;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.701-717
    • /
    • 2003
  • The objective of this study was to extensively estimate the air quality trends of the study area by surveying con-centration trends in months or seasons, after analyzing the mass concentration of PM-10 samples and the inorganic lements, ion, and total carbon in PM-10. Also, the study introduced to apply the PMF (Positive Matrix Factoriza-tion) model that is useful when absence of the source profile. Thus the model was thought to be suitable in Korea that often has few information about pollution sources. After obtaining results from the PMF modeling, the existing sources at the study area were qualitatively identified The PM-10 particles collected on quartz fiber filters by a PM-10 high-vol air sampler for 3 years (Mar. 1999∼Dec.2001) in Kyung Hee University. The 25 chemical species (Al, Mn, Ti, V, Cr, Fe, Ni, Cu, Zn, As, Se, Cd, Ba, Ce, Pb, Si, N $a^{#}$, N $H_4$$^{+}$, $K^{+}$, $Mg^{2+}$, $Ca^{2+}$, C $l^{[-10]}$ , N $O_3$$^{[-10]}$ , S $O_4$$^{2-}$, TC) were analyzed by ICP-AES, IC, and EA after executing proper pre - treatments of each sample filter. The PMF model was intensively applied to estimate the quantitative contribution of air pollution sources based on the chemical information (128 samples and 25 chemical species). Through a case study of the PMF modeling for the PM-10 aerosols. the total of 11 factors were determined. The multiple linear regression analysis between the observed PM-10 mass concentration and the estimated G matrix had been performed following the FPEAK test. Finally the regression analysis provided source profiles (scaled F matrix). So, 11 sources were qualitatively identified, such as secondary aerosol related source, soil related source, waste incineration source, field burning source, fossil fuel combustion source, industry related source, motor vehicle source, oil/coal combustion source, non-ferrous metal source, and aged sea- salt source, respectively.ively.y.

Characteristics of Metallic and Ionic Concentration in $PM_{10}$ at Inland and Seashore in Busan (부산지역 내륙과 해안의 $PM_{10}$ 중의 금속농도와 이온농도 특성)

  • Jeon, Byung-Il;Hwang, Yong-Sik;Oh, Kwang-Joong
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.3
    • /
    • pp.323-333
    • /
    • 2010
  • $PM_{10}$ mass were measured in Gwaebeopdong (inland) and Dongsamdong (seashore) of Busan in summer and fall, 2007 and the 24-hour averaged samples were analyzed to investigate temporal and spatial variability of metallic elements and water-soluble ions in $PM_{10}$. Overall average concentrations of $PM_{10}$ mass during the study period were 72.7 ${\mu}g/M^3$ and 64.3 ${\mu}g/M^3$ in Gwaebeopdong and Dongsamdong, respectively. As for metal elements, averaged concentrations of crustal components, Ca, Fe, K, Mn, and Ti, in Gwaebeopdong exhibited enhancement relative to Dongsamdong. Non-crustal elements, Pb and Cu, displayed elevated levels in Gwaebeopdong while Ni and Zn were observed to be high in Dongsamdong. Averaged nitrate concentration in Gwaebeopdong (6.36 ${\mu}g/M^3$) was greater than in Dongsamdong(5.68 ${\mu}g/M^3$) and both areas had higher level of nitrate in summer than in fall. Averaged sulfate concentrations in Dongsamdong (25.4%) exhibited elevated level relative to Gwaebeopdong (19.4%). Overall average contribution of water-soluble ions to $PM_{10}$ in Dongsamdong (47.5%) was higher than in Gwaebeopdong (37.8%). The average mass fractions of secondary ions in $PM_{10}$ were elevated in Dongsamdong (37.1%) as compared to Gwaebeopdong (31.4%). Equivalent ratio of [${SO_4}^{2-}/NO_3{^-}$] was seen to be lower in Gwaebeopdong (1.39) than that in Dongsamdong (1.79) and consistently higher in summer than in fall for both areas.

Long-term Characteristics of PM2.5 and Its Metallic Components in Chuncheon, Korea (춘천시 대기 중 PM2.5 및 금속성분의 장기간 농도 특성)

  • Byun, Jin-Yeo;Cho, Sung-Hwan;Kim, Hyun-Woong;Han, Young-Ji
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.406-417
    • /
    • 2018
  • In this study, $PM_{2.5}$ samples were collected during approximately 3 years in Chuncheon, a small residential and tourist city, in Korea. The average $PM_{2.5}$ concentration was $26.9{\mu}g/m^3$, exceeding the annual national air quality standard. $PM_{2.5}$ showed typical seasonal variation, having higher concentration in winter and lower concentration in summer. Sixteen metallic elements in $PM_{2.5}$ were also analyzed, and K was the highest contributor especially in late fall and winter. In addition, K considerably increased for the top 10% of $PM_{2.5}$ samples and showed the highest correlation coefficient with $PM_{2.5}$ among all other metallic elements. These results suggest that the combustion of agricultural residue and other biomass, the major source of K was likely to be important to high $PM_{2.5}$ concentration events in this city. Crustal elements including Al, Fe, Si, Ti, Mg showed high concentration in spring while Cr, Cu and Ni were relatively consistent throughout a year. Principal component analysis was used to trace the sources, and soil re-suspension, combustion of biomass and fossil fuels, and asphalt concrete production were identified as the main sources of $PM_{2.5}$.

Chemical Properties of Indoor Individual Particles Collected at the Daily Behavior Spaces of a Factory Worker

  • Ma, Chang-Jin;Kang, Gong-Unn;Sakai, Takuro
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.122-130
    • /
    • 2017
  • The main purpose of the study was to clarify the properties of individual particles collected at each behavior space of a factory worker. The samplings of size-segregated ($PM_{2.1-1.1}$ and $PM_{4.7-3.3}$) indoor particles were conducted at three different behavior spaces of a factory worker who is engaged in an auto parts manufacturing plant (i.e., his home, his work place in factory, and his favorite restaurant). Elemental specification (i.e., relative elemental content and distribution in and/or on individual particles) was performed by a micro-PIXE system. Every element detected from the coarse particulate matters of home was classified into three groups, i.e., a group of high net-counts (Na, Al, and Si), a group of intermediate net-counts (Mg, S, Cl, K, and Ca), and a group of minor trace elements (P, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, and Pb). The results of EF for $PM_{4.7-3.3}$ in home indicated that several heavy metals were generated from the sources within the house itself. An exceptional feature shown in the individual particles in workplace is that Cr, Mn, and Co were clearly detected in both fine and coarse particles. Cluster analysis suggested that the individual coarse particles ($PM_{4.7-3.3}$) collected at the indoor of factory were chemically heterogeneous and they modified with sea-salt, mineral, and artificially derived elements. The principal components in individual coarse particles collected at restaurant were sea-salt and mineral without mixing with harmful trace elements like chromium and manganese. Compared to the indoor fine particles of home and restaurant, many elements, especially, Cl, Na, Cr, Mn, Pb, and Zn showed overwhelmingly high net-counts in those of factory.

A Study for Characteristics of PM10 in the Subway Passenger Cabins (지하철 전동차 객실에서의 PM10 오염특성 파악에 관한 연구)

  • Oh, Mi-Seok;Park, Duck-Shin;Park, Eun-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.5
    • /
    • pp.523-533
    • /
    • 2011
  • This study had the aim of characteristics of $PM_{10}$ in subway cabins. $PM_{10}$ was measured by times of day (rush and non rush hours) and seasons with real time $PM_{10}$ sampler on the subway cabins of line 7. Filter samples were collected for evaluation of their elemental composition as well as identification of major sources of $PM_{10}$ using a receptor model, PMF. $PM_{10}$ concentration were the highest in the winter season both in the rush and non rush hours at 152.8 ${\mu}g/m^3$, 90.2 ${\mu}g/m^3$ respectively. The $PM_{10}$ concentrations in rush hour were 30% higher compared to non rush hours. Based on the chemical information, the composition rare of inorganic elements was 52.5%, anions were 10.2% and others were 37.3%. Fe was the most abundant element and significantly correlated (p.0.01) with Mn (r=0.97), Ti (r=0.91), Cr (r=0.88), Ni (r=0.89) and Cu (r=0.88). Characterized $PM_{10}$ sources by PMF in the cabin were soil and road dust related sources (27.2%), railroad related sources (47.5%), secondary nitrate sources (16.2%) and a Cl-factor mixed with a secondary sulfate source (9.1%).

Deformation and Fracture Behavior of Structural Bulk Amorphous Metal under Quasi-Static Compressive Loading (준정적 압축하에서 구조용 벌크 아몰퍼스 금속의 변형 및 파괴거동)

  • Shin, Hyung-Seop;Ko, Dong-Kyun;Oh, Sang-Yeob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1630-1635
    • /
    • 2003
  • The deformation and fracture behaviors of a bulk amorphous metal, Zr-based one (Zr$\_$41.2/Ti$\_$13.8/Cu$\_$12.5/Ni$\_$10/Be$\_$22.5/: Vitreloy), were investigated over a strain rate range (7x10$\^$-4/~4 s$\^$-1/). The uniaxial compression test and the indentation test using 3mm-diameter WC balls were carried out under quasi-static loading conditions. As a result, at the uniaxial compressive state, the fracture stress of the material was very high (~1,700MPa) and the elastic strain limit was about 2%. The fracture strength showed a strain rate independent behavior up to 4 s$\^$-1/. Using indentation tests, the plastic deformation behavior of the Zr-based BAM up to a large strain value of 15% could be achieved, even though it was the deformation under locally constrained condition. The Meyer hardness of the Zr-based BAM measured by static indentation tests was about 5 GPa and it revealed negligible strain hardening behavior. At indented sites, the plastic indentation occurred forming a crater and well-developed multiple shear bands were generated around it along the direction of 45 degree when the indentation load exceeded 7kN. With increasing indentation load, shear bands became dense. The fracture surface of the specimen after uniaxial compressive tests showed vein-like pattern, typical morphology of many BAMs.

Health Risk Assessment of Heavy Metals in PM2.5 in Industrial Areas (일부 공단지역 PM2.5에 부착된 중금속 노출에 의한 건강위해성평가)

  • Jeon, Jun-Min;Kang, Byungb-Wook;Lee, Hak-Sung;Lee, Cheol-Min
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.4
    • /
    • pp.294-305
    • /
    • 2010
  • This study estimated the health risk of heavy metals in particulate matter $(PM)_{2.5}$ in a Gwangyang industrial complex. The $PM_{2.5}$ containing heavy metal was collected from January to November, 2008 using a denuder air sampler and by IC (Ion Chromatograph). The risk assessment was performed in a four-step process; hazard identification, exposure assessment, dose-response assessment and risk characterization. In the hazard identification process, $Cr^{6+}$, Ni, As, and Pb were categorized as human carcinogens and probable human carcinogens, while Ti, Mn, Se, P, $Cr^{3+}$, Cu, and Zn were not classified as human carcinogens. It was found that the excess cancer risk by Central Tendency Exposure (CTE) of $Cr^{6+}$ and As in $PM_{2.5}$ was > $10^{-6}$, and the total excess cancer risk posed by carcinogen heavy metals in $PM_{2.5}$ was > $10^{-6}$. It was also determined that the total hazard index by CTE of non-carcinogen heavy metals in $PM_{2.5}$ was <1. Taken together, these results indicate a high cancer risk associated whit inhalation of heavy metal-containing$PM_{2.5}$ in industrial areas.

Application of Semi-continuous Ambient Aerosol Collection System for Elemental Analysis (대기입자의 원소성분 배출특성연구를 위한 반-연속식 입자채취시스템 적용)

  • Park, Seung-Shik;Ko, Jae-Min;Lee, Dong-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.1
    • /
    • pp.39-51
    • /
    • 2012
  • Aerosol slurry samples were collected in 60-min interval using Korean Semi-continuous Elements in Aerosol Sampler (KSEAS) between May 19 and June 6, 2010 at an urban site of Gwangju. The $PM_{2.5}$ samples were collected with a flow rate of 16.7 L/min and particles are grown by condensation of water vapor in a condenser maintained at ${\sim}5^{\circ}C$ after saturation by direct injection of steam. The resulting droplets are collected in a liquid slurry with a airdroplet separator. Concentrations of 16 elements (Al, Fe, Mn, Ca, K, Cu, Zn, Pb, Cd, Cr, Ti, V, Ni, Co, As, Se) in the collected slurry samples were determined off-line by ICP-MS. KSEAS sample analysis encompassed the sampling periods for which 24-hr average elemental species concentrations were calculated for comparison with those derived from 24-hr integrated filter samples. Relationship between elemental species measured by two methods indicated high correlation coefficients (r), mostly greater than r of 0.80. However, we note that concentrations of Al, K, Ca, Mn, and Fe, which are often associated with crustal elemental particles, in the KSEAS samples, were substantially lower (1.4~11 times) than those found in the typical filter-based samples. This discrepancy is probably due to difficulties in transferring insoluble dust particles to the collection vials in the KSEAS. Temporal profiles of elemental concentrations indicate that some transient events in their concentrations are observed over the sampling periods. For the elemental species studied, atmospheric concentrations during the transient events increased by factors of 4 in Mn~80 in Zn, compared to their background levels. Principle component analyses were applied to the hourly KSEAS data sets to identify sources affecting the concentrations of the metal constituents observed. In this study, we conclude that hourly measurements for particle-bound elemental constituents were extremely useful for revealing the short-term variability in their concentrations and developing insights into their sources.

Formation of Nano-oxides on Porous Metallic Glass Compacts using Hydrothermal Synthesis (수열합성 공정을 이용한 금속 다공체의 나노 산화물 형성)

  • Park, H.J.;Kim, Y.S.;Hong, S.H.;Kim, J.T.;Cho, J.Y.;Lee, W.H.;Kim, Ki Buem
    • Journal of Powder Materials
    • /
    • v.22 no.4
    • /
    • pp.229-233
    • /
    • 2015
  • Porous metallic glass compact (PMGC) are developed by electro-discharge sintering (EDS) process of gas atomized $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ metallic glass powder under of 0.2 kJ generated by a $450{\mu}F$ capacitor being charged to 0.94 kV. Functional iron-oxides are formed and growth on the surface of PMGCs via hydrothermal synthesis. It is carried out at $150^{\circ}C$ for 48hr with distilled water of 100 mL containing Fe ions of 0.18 g/L. Consequently, two types of iron oxides with different morphology which are disc-shaped $Fe_2O_3$ and needle-shaped $Fe_3O_4$ are successfully formed on the surface of the PMGCs. This finding suggests that PMGC witih hydrothermal technique can be attractive for the practical technology as a new area of structural and functional materials. And they provide a promising road map for using the metallic glasses as a potential functional application.