• Title/Summary/Keyword: NiTiCu

Search Result 307, Processing Time 0.026 seconds

Piezoelectric Characteristics of Low-temperature Sintered PSN-PZT Ceramics as a Function of Zr/Ti Ratio (저온소결한 PSN-PZT 세라믹스의 Zr/Ti 비에 따른 압전특성)

  • 류주현;우원희;오동언;정영호;정광현;류성림
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1195-1199
    • /
    • 2003
  • In this study, in order to develop the low temperature sintering ceramics for multilayer piezoelectric transformer, dielectric and piezoelectric properties of PSN-PZT[0.91Pb(Sb$\sub$1/2/Nb$\sub$1/2/)$\sub$0.03/(Zr$\sub$0.495/Ti$\sub$0.505/)$\sub$0.97/O$_3$-0.04Pb(Ni$\sub$1/2/W$\sub$1/2/)O$_3$+0.05BiFeO$_3$+0.3wt%MnO$_2$+0.6wt%CuO〕 ceramics were investigated according to Zr/Ti ratio. As Zr/Ti ratio is increased, electromechanical coupling factor(k$\sub$p/) and dielectric constant increased and then decreased after the ratio of Zr/Ti=50/50. Also, mechanical qualify factor(Q$\sub$m/) decreased and then increased after the ratio of Zr/Ti=50/50.

Brazing of Aluminium Nitride(AlN) to Copper with Ag-based Active Filler Metals (은(Ag)계 활성금속을 사용한 질화 알미늄(AlN)과 Cu의 브레이징)

  • Huh, D.;Kim, D.H.;Chun, B.S.
    • Journal of Welding and Joining
    • /
    • v.13 no.3
    • /
    • pp.134-146
    • /
    • 1995
  • Aluminium nitride(AlN) is currently under investigation as potential candidate for replacing alumium oxide(Al$_{2}$ $O_{3}$) as a substrate material for for electronic circuit packaging. Brazing of aluminium nitride(AlN) to Cu with Ag base active alloy containing Ti has been investigated in vacuum. Binary Ag$_{98}$ $Ti_{2}$(AT) and ternary At-1wt.%Al(ATA), AT-1wt.%Ni(ATN), AT-1wt.% Mn(ATM) alloys showed good wettability to AlN and led to the development of strong bond between brate alloy and AlN ceramic. The reaction between AlN and the melted brazing alloys resulted in the formation of continuous TiN layers at the AlN side iterface. This reaction layer was found to increase by increase by increasing brazing time and temperature for all filler metals. The bond strength, measured by 4-point bend test, was increased with bonding temperature and showed maximum value and then decreased with temperature. It might be concluded that optimum thickness of the reaction layer was existed for maximum bond strength. The joint brazed at 900.deg.C for 1800sec using binary AT alloy fractured at the maximum load of 35kgf which is the highest value measured in this work. The failure of this joint was initiated at the interface between AlN and TiN layer and then proceeded alternately through the interior of the reaction layer and AlN ceramic itself.

  • PDF

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

Microstructures and Mechanical Properties of Beryllium(Be)-free Ni-Cr-Mo based Alloys for Metal-Ceramic Crown (베릴륨(Be)이 미 첨가된 치과도재소부용 Ni-Cr-Mo계 합금의 미세조직 및 기계적 성질 특성)

  • Song, Kyung-Woo;Go, Eun-Kyoung;Lee, Jung-Hwan;Jung, Jong-Hyun;Noh, Hak;Han, Jae-Ick
    • Journal of Technologic Dentistry
    • /
    • v.28 no.2
    • /
    • pp.321-329
    • /
    • 2006
  • The popularity of Ni-Cr-Mo based metal alloys for metal-ceramic crown have increased recently because of low price, superior yield strength and rigidity. the use of these alloys give them the potential advantage of thinner copping with the required rigidity for long span bridges. The purpose of this study was to assess the microstructures and mechanical properties of Ni-Cr-Mo-(Si,Al,Nb,Zr,Ti.Cu,Mm) based Alloys not containing beryllium(Be) related toxic effects. The abtained results indicated that as-cast these specimen alloys showed compositional and microstructural differences, and mechanical properties values of Ni69Cr20Mo5Si2Al4 alloy among these specimen alloys was found to be superior to those of commercial Ni-Cr based alloy using in market place today.

  • PDF

Continuous Wet Oxidation of TCE over Supported Metal Oxide Catalysts (금속산화물 담지촉매상에서 연속 습식 TCE 분해반응)

  • Kim, Moon Hyeon;Choo, Kwang-Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.206-214
    • /
    • 2005
  • Heterogeneously-catalyzed oxidation of aqueous phase trichloroethylene (TCE) over supported metal oxides has been conducted to establish an approach to eliminate ppm levels of organic compounds in water. A continuous flow reactor system was designed to effect predominant reaction parameters in determining catalytic activity of the catalysts for wet TCE decomposition as a model reaction. 5 wt.% $CoO_x/TiO_2$ catalyst exhibited a transient period in activity vs. on-stream time behavior, suggesting that the surface structure of the $CoO_x$ might be altered with on-stream hours; regardless, it is probable to be the most promising catalyst. Not only could the bare support be inactive for the wet decomposition reaction at $36^{\circ}C$, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. Very low TCE conversion appeared for $TiO_2$-supported $NiO_x$ and $CrO_x$ catalysts. Wet oxidation performance of supported Cu and Fe catalysts, obtained through an incipient wetness and ion exchange technique, was dependent primarily on the kinds of the metal oxides, in addition to the acidic solid supports and the preparation routes. 5 wt.% $FeO_x/TiO_2$ catalyst gave no activity in the oxidation reaction at $36^{\circ}C$, while 1.2 wt.% Fe-MFI was active for the wet decomposition depending on time on-stream. The noticeable difference in activity of the both catalysts suggests that the Fe oxidation states involved to catalytic redox cycle during the course of reaction play a significant role in catalyzing the wet decomposition as well as in maintaining the time on-stream activity. Based on the results of different $CoO_x$ loadings and reaction temperatures for the decomposition reaction at $36^{\circ}C$ with $CoO_x/TiO_2$, the catalyst possessed an optimal $CoO_x$ amount at which higher reaction temperatures facilitated the catalytic TCE conversion. Small amounts of the active ingredient could be dissolved by acidic leaching but such a process gave no appreciable activity loss of the $CoO_x$ catalyst.

A Design Approach to $CrO_x/TiO_2$-based Catalysts for Gas-phase TCE Oxidation (기상 TCE 제거반응용 $CrO_x/TiO_2$계 복합 산화물 촉매 디자인)

  • Yang, Won-Ho;Kim, Moon-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.368-375
    • /
    • 2006
  • Single and complex metal oxide catalysts supported onto a commercial DT51D $TiO_2$ have been investigated for gas-phase TCE oxidation in a continuous flow type fixed-bed reaction system to develop a better design approach to catalysts for this reaction. Among the $TiO_2$-supported single metal oxides used, i.e., $CrO_x,\;FeO_x,\;MnO_x,\;LaO_x,\;CoO_x,\;NiO_x,\;CeO_x\;and\;CuO_x$, with the respective metal contents of 5 wt.%, the $CrO_x/TiO_2$ catalyst was shown to be most active for the oxidative TCE decomposition, depending significantly on amounts of $CrO_x\;on\;TiO_2$. The use of high $CrO_x$ loadings greater than 10 wt.% caused lower activity in the catalytic TCE oxidation, which is probably due to production of $Cr_2O_3$ crystallites on the surface of $TiO_2$. $CrO_x/TiO_2$-supported $CrO_x$-based bimetallic oxide catalysts were of particular interest in removal efficiency for this TCE oxidation reaction at reaction temperatures above $200^{\circ}C$, compared to that obtained with $CrO_x$-free complex metal oxides and a 10 wt.% $CrO_x/TiO_2$ catalyst. Catalytic activity of 5 wt.% $CrO_x-5$ wt.% $LaO_x$ in the removal reaction was similar to or slightly higher than that acquired for the $CrO_x$-only catalyst. Similar observation was revealed for 5 wt.% $CrO_x$-based bimetallic oxides consisting of either 5 wt.% $MnO_x,\;CoO_x,\;NiO_x\;or\;FeO_x$. These results represent that such $CrO_x$-based bimetallic systems for the catalytic TCE oxidation on significantly minimize the usage of $CrO_x$ that is well known to be one of very toxic heavy metals, and offer a very useful technique to design new type catalysts for reducing chlorinated volatile organic substances.

Microstructure Control of Cu base amorphous Alloys by Extrusion (압출공정을 이용한 Cu 계 비정질 합금의 미세조직제어)

  • Kim, Taek-Soo;Lee, Jin-Kyu
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.236-240
    • /
    • 2007
  • In order to control the microstructure of amorphous/crystalline composites, gas atomized $Cu_{54}Ni_{6}Zr_{22}Ti_{18}$ metallic glass powders wrapped in a crystalline brass were extruded repeatedly. The size of microstructure in the resultant composites was varied depending on the pass of extrusion as well as on the area reduction ratio. The microstructure could be estimated using an equation of $r_n=r_{n-1}/R^{1/2}$, where R is reduction ratio and $r_n$ is the resultant radius of the extruded bar after n pass. Theory of microstructural refinement as well as the relationship between the resultant microstructures and mechanical properties was discussed.

  • PDF

A Seasonal Variation of Elemental Composition of Fine Particles in Chongju Area using PIXE (PIXE를 이용한 청주지역 미세입자 중 원소의 계절 변동 특성)

  • 강병욱;이학성;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.4
    • /
    • pp.307-317
    • /
    • 1997
  • Samples of fine particle $(d_P<2.5 \mum)$ were taken in Chongju area using a dichotomous sampler. The data set was collected on fifty-eight different days with 24 hour sampling period from October 27, 1995 through August 25, 1996. The samples were analyzed using a proton induced x-ray emission (PIXE) for Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, M, Fe, Ni, Cu, Zn, Br and Pb. Values of Fe, Ca, Si, Cu, K and Cl exhibit marked seasonal variations. Mean concentrations for this study had the following order S > Cl > Si > K > Al > Fe on fine particle. Concentrations of Ca, Si and Fe were higher during the spring season compared with any other season. These phenomena may be attributable to soil dust. Cl and K were higher in the winter, which may be explained by combustion of fossil fuel. Higher values for Cu and Zn in the Winter may be due to the combustion and incineration.

  • PDF

Deformation behavior in Cu-based bulk amorphous alloys composite during compression (동기지 동계 Bulk Amorphous 복합재의 압축 변형거동)

  • Lee C. H.;Kim J. S.;Park E. S.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.203-206
    • /
    • 2004
  • Copper-based bulk amorphous alloy composite was synthesized by using the copper-coated $Cu_{54}Ni_{6}Zr_{22}Ti_{18}$ amorphous powder which was obtained by argon gas atomization. The amorphous powder having a super-cooled liquid region of 53 K was coated by crystalline copper by electroless coating. The consolidation was carried out by manufacturing performs and by the subsequent warm extrusion at 743 K. During the compression test at the room temperature, the composite containing a large fraction of crystalline copper displayed a larger plastic strain after yielding. FEM simulation revealed change in fracture modes in the composites depending on the amount of crystalline copper in the composites.

  • PDF

Deformation and crystallization of Cu-base BMG alloy in the supercooled liquid region (과냉각 액상 구간에서 Cu-based BMG 합금의 결정화와 변형 거동)

  • Park, E.S.;Lee, J.H.;Kim, H.J.;Bae, J.C.;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.143-145
    • /
    • 2007
  • The correlation between crystallization and deformation behavior in the supercooled liquid region (SLR) of a $Cu_{54}Ni_{6}Zr_{22}Ti_{18}$ bulk metallic glass (BMG) alloy is investigated by compression tests, differential scanning calorimetry (DSC), electron energy loss spectrometry (EELS) and high resolution transmission electron microscopy (HRTEM). In the SLR, This BMG alloy was strongly depended on the deformation temperature and the alloy exhibits important change in deformation behavior after a given time which is directly connected to the development of crystallization. Compressive stress impeded decomposition and consequently retarded forming of nano-crystal, which led to enlarge the homogeneous deformation region of the BMG alloy in SLR during compression test.

  • PDF