• Title/Summary/Keyword: NiFeSiB

Search Result 81, Processing Time 0.028 seconds

Investigation of Micromorphological Characteristics of Acupuncture Needle Tip Using SEM-EDX (SEM-EDX를 이용한 침 끝의 미세 부착물의 조성에 대한 관찰)

  • Jang, In-Soo;Son, Dong-Hyuk;Song, Ho-Seop;Lee, In-Hwan;Park, Jong-Bae
    • Journal of Acupuncture Research
    • /
    • v.22 no.6
    • /
    • pp.135-140
    • /
    • 2005
  • Objectives : There have been several studies about the quality of acupuncture needle tip recently. We have investigated the condition of the tip of the acupuncture needles in the last studies. In the former studies, we discovered the metallic scuff, lumps and irregularities of the acupuncture needle tips under the microscope. But, no information was available on those foreign materials' identity. Methods : We have selected 200 needles of 1000 pieces from several companies by randomized methods. And we observed the tip of the 6 needles selected finally at ${\times}1000\;or\;{\times}3000$ magnification and analyzed the components of the metallic scuff, lumps and irregularities of the needle tips with a SEM-EDX analyser. Results : We found that the identity of the metallic scuff, lumps and irregularities of the needle tips were metallic materials and silicon. For example, A point was composed of Fe(69.78%), Cr(17.71%), Ni(8.11%), Zn(2.04%), Si(1.23%), Mn(1.12%), and B point was composed of Si(66.40%), Fe(26.76%), Cr(6.84%). Conclusion : The results of this study confirm that there is a real possibility of the remaining of metallic materials and silicon in body of patient, after acupuncture treatment. Therefore, it is necessary to intensify our efforts to make needles of good quality and to concentrate on manufacturing process of acupuncture needles completely to be free from danger in acupuncture treatment.

  • PDF

Study on the tasty constituents and minerals in Clavariaceae botrytis (싸리버섯의 정미성분(呈味成分)과 Mineral에 관(關)한 연구(硏究))

  • Seoh, Jeong-Hi;Cho, Soo-Yeul;Lee, Sung-Woo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.3 no.1
    • /
    • pp.17-21
    • /
    • 1974
  • Tasty constituents such as free amino acids. free organic acids and free sugars and minerals in clavariaceae botrytis were surveyed through the course of this study. The results were as, follows: 1. Isoleucine valine threonine alanine methionine cysteine glutamine histidine glutamic acid and aspartic acid were presented in clavariaceae botrytis, and aspartic acid showed the highest amount. 2. Succinic acid was the major organic acid in clavariaceae botrytis, and also citric acid malic acid and fumaric acid were presented. 3. Clavariaceae botrytis contained fructose, maltose glucose and sucrose ; glucose and sucrose were more than 80% of total sugars. 4. Na K Mg Ca Zn Mn Cu am Fe by atomic absorption spectrometer were detected and assayed. and Al Si Ni Sn Ti Cr Ag Pb B and Sr detected by emission spectrograph. K of these minerals showed the highest amount but very small amount of Ca was presented.

  • PDF

Change of Optical Properties in Zinc Oxide-Based Glasses including Metal Oxides for Transparent Dielectric

  • Seo, Byung-Hwa;Kim, Hyung-Sun;Suh, Dong-Hack
    • Korean Journal of Materials Research
    • /
    • v.19 no.10
    • /
    • pp.533-537
    • /
    • 2009
  • This paper presents a new method for the improvement of color temperature without the change of the driving scheme using transparent dielectric layers with various metal oxides (CeO$_2$, Co$_3$O$_4$, CuO, Fe$_2$O$_3$, MnO$_2$, NiO) in plasma display panels (PDP). In this study, we fabricated ZnO-B$_2$O$_3$-SiO$_2$-Al$_2$O$_3$ glasse with various metal oxides and examined the optical properties of these glasses. As the metal oxides were added to the glasses, the visible transmittances of the dielectric layers decreased and the transmittances in special wavelength regions were reduced at different rates. The change of the transmittance in each wavelength range induced the variation of the visible emission spectra and the change of the color temperature in the PDP. The addition of Co$_3$O$_4$ and CuO slightly decreased the intensity of the blue light, but the intensities of the green and the red light were significantly decreased. Therefore, the color temperature can be improved from 6087K to 7378K and 7057K, respectively.

Geochemistry and Mineralogy of Metapelite and Barium-Vanadium Muscovite from the Ogcheon Supergroup of the Deokpyeong Area, Korea (덕평지역(德平地域)의 옥천누층군(沃川累層群)에 분포(分布)하는 변성이질암(變成泥質岩)과 바륨-바나듐 백운모(白雲母)의 지구화학적(地球化學的) 및 광물학적(鑛物學的) 특성(特性))

  • Lee, Chan Hee;Lee, Hyun Koo
    • Economic and Environmental Geology
    • /
    • v.30 no.1
    • /
    • pp.35-49
    • /
    • 1997
  • The coal formation of the Deokpyeong area are interbedded along metapelites of the Ogcheon Supergroup, which are composed mainly of graphite, quartz, muscovite and associated with small amounts of biotite, chlorite, pyrite and barite. The ratios of $SiO_2/Al_2O_3$, $Al_2O_3/Na_2O$ and $K_2O/Na_2O$ of the coaly metapelite are variable and wide range from 1.80 to 10.21, from 27.8 to 388.8 and from 7.6 to 61.8, respectively. These coal formation were deposited in basin of marine environments, and the REE of these rocks are not influenced with metamorphism and hydrothermal alterations on the basis of $Al_2O_3$ versus La, La against Ce, the ratios of La/Ce (0.19 to 0.99) and Th/U (0.02 to 4.75). These rocks also show much variation in $La_N/Yb_N$ (1.19 to 22.89), Th/Yb (0.14 to 21.43) and La/Th (0.44 to 13.67), and their origin is explained by derivation from a mixture of sedimentary and igneous rocks. The wide range in trace and REE element characteristics as Co/Th (0.12 to 2.78), La/Sc (0.33 to 10.18), Sc/Th (0.57 to 5.73), V/Ni (8 to 2347), Cr/V (0.02 to 0.67) and Ni/Co (1.56 to 32.95) of these coaly metapelites argues for inefficient mixing of the various source lithologies during sedimentation. Deep to pale green barium-vanadium muscovites (vanadium-oellacherite) have been found in this coal formations. Modes of occurrence and grain size of muscovite are heterogeneous, but most of the barium and vanadium-bearing muscovites occur along the boundaries between graphite and quartz grains, ranging from 200 to $350{\mu}m$ in length and from 40 to $60{\mu}m$ in width. Results of X-ray diffraction data of the minerals characterized to be monoclinic system with $a=5.249{\AA}$, $b=8.939{\AA}$, $c=20.924{\AA}$ and ${\beta}=95.894^{\circ}$. Representative chemical formula of the muscovite was $(Na_{0.09}K_{1.44}Ba_{0.46})(Al_{2.75}Ti_{0.07}V_{0.56}Fe_{0.08}Mg_{0.50})(Si_{6.12}Al_{1.88})O_{22}$. The V possibly substitute octahedral Al, and the Ba is coupled substitution of $K^+Si^{4+}=Ba^{2+}Na^+Ca^{2+}$, which compositional ranges of V and Ba are from 0.42 to 0.69 and from 0.34 to 0.56 based on $O_{22}$, respectively. Formation mechanism of the barium-vanadium muscovites in the coaly metapelite is shown that the formed by high pressure and temperature from regional metamorphism origanated during diagenesis at the interface between a basinal brine and organic matter.

  • PDF

Improvement of Electron Emission Characteristics and Emission Stability from Metal-coated Carbon Nanotubes (금속 코팅된 탄소나노튜브의 전계 방출 특성 및 신뢰성 향상)

  • Uh, H.S.;Park, S.;Kim, B.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.436-441
    • /
    • 2011
  • Metal coating with several nanometer thickness was applied on the carbon nanotubes (CNTs) in order to improve electron emission characteristics and emission reliability for the potential applications in the area of various electron sources and displays. CNTs were grown on the 2-nm thick Invar (52% Fe, 42% Ni, 6% Co alloy)-catalized Si substrate by using plasma-enhanced chemical vapor deposition at $450^{\circ}C$. In order to reduce the spatial density of densely packed CNTs, as-grown CNTs were partly etched back by $N_2$ plasma and subsequently coated with 5~150 nm thick Ti by a sputtering method. 5 nm thick Ti-coated CNTs produced four times higher emission current density at the electric field of 6 V/${\mu}m$ and much lower emission current fluctuation, compared with the as-grown CNTs. These improved emission properties are mainly due to not only the work function of Ti (4.3 eV) lower than that of pristine CNTs (5 eV), but also lower contact resistance and better adhesion between CNT emitters and substrate accomplished by Ti coating.

Application of Gamma Ray Densitometry in Powder Metallurgy

  • Schileper, Georg
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.07a
    • /
    • pp.25-37
    • /
    • 2002
  • The most important industrial application of gamma radiation in characterizing green compacts is the determination of the density. Examples are given where this method is applied in manufacturing technical components in powder metallurgy. The requirements imposed by modern quality management systems and operation by the workforce in industrial production are described. The accuracy of measurement achieved with this method is demonstrated and a comparison is given with other test methods to measure the density. The advantages and limitations of gamma ray densitometry are outlined. The gamma ray densitometer measures the attenuation of gamma radiation penetrating the test parts (Fig. 1). As the capability of compacts to absorb this type of radiation depends on their density, the attenuation of gamma radiation can serve as a measure of the density. The volume of the part being tested is defined by the size of the aperture screeniing out the radiation. It is a channel with the cross section of the aperture whose length is the height of the test part. The intensity of the radiation identified by the detector is the quantity used to determine the material density. Gamma ray densitometry can equally be performed on green compacts as well as on sintered components. Neither special preparation of test parts nor skilled personnel is required to perform the measurement; neither liquids nor other harmful substances are involved. When parts are exhibiting local density variations, which is normally the case in powder compaction, sectional densities can be determined in different parts of the sample without cutting it into pieces. The test is non-destructive, i.e. the parts can still be used after the measurement and do not have to be scrapped. The measurement is controlled by a special PC based software. All results are available for further processing by in-house quality documentation and supervision of measurements. Tool setting for multi-level components can be much improved by using this test method. When a densitometer is installed on the press shop floor, it can be operated by the tool setter himself. Then he can return to the press and immediately implement the corrections. Transfer of sample parts to the lab for density testing can be eliminated and results for the correction of tool settings are more readily available. This helps to reduce the time required for tool setting and clearly improves the productivity of powder presses. The range of materials where this method can be successfully applied covers almost the entire periodic system of the elements. It reaches from the light elements such as graphite via light metals (AI, Mg, Li, Ti) and their alloys, ceramics ($AI_20_3$, SiC, Si_3N_4, $Zr0_2$, ...), magnetic materials (hard and soft ferrites, AlNiCo, Nd-Fe-B, ...), metals including iron and alloy steels, Cu, Ni and Co based alloys to refractory and heavy metals (W, Mo, ...) as well as hardmetals. The gamma radiation required for the measurement is generated by radioactive sources which are produced by nuclear technology. These nuclear materials are safely encapsulated in stainless steel capsules so that no radioactive material can escape from the protective shielding container. The gamma ray densitometer is subject to the strict regulations for the use of radioactive materials. The radiation shield is so effective that there is no elevation of the natural radiation level outside the instrument. Personal dosimetry by the operating personnel is not required. Even in case of malfunction, loss of power and incorrect operation, the escape of gamma radiation from the instrument is positively prevented.

  • PDF

Lead-free inorganic metal perovskites beyond photovoltaics: Photon, charged particles and neutron shielding applications

  • Srilakshmi Prabhu;Dhanya Y. Bharadwaj;S.G. Bubbly;S.B. Gudennavar
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1061-1070
    • /
    • 2023
  • Over the last few years, lead-free inorganic metal perovskites have gained impressive ground in empowering satellites in space exploration owing to their material stability and performance evolution under extreme space environments. The present work has examined the versatility of eight such perovskites as space radiation shielding materials by computing their photon, charged particles and neutron interaction parameters. Photon interaction parameters were calculated for a wide energy range using PAGEX software. The ranges of heavy charged particles (H, He, C, N, O, Ne, Mg, Si and Fe ions) in these perovskites were estimated using SRIM software in the energy range 1 keV-10 GeV, and that of electrons was computed using ESTAR NIST software in the energy range 0.01 MeV-1 GeV. Further, the macroscopic fast neutron removal cross-sections were also calculated to estimate the neutron shielding efficiencies. The examined shielding parameters of the perovskites varied depending on the radiation type and energy. Among the selected perovskites, Cs2TiI6 and Ba2AgIO6 displayed superior photon attenuation properties. A 3.5 cm thick Ba2AgIO6-based shield could reduce the incident radiation intensity to half its initial value, a thickness even lesser than that of Pb-glass. Besides, CsSnBr3 and La0.8Ca0.2Ni0.5Ti0.5O3 displayed the highest and lowest range values, respectively, for all heavy charged particles. Ba2AgIO6 showed electron stopping power (on par with Kovar) better than that of other examined materials. Interestingly, La0.8Ca0.2Ni0.5Ti0.5O3 demonstrated neutron removal cross-section values greater than that of standard neutron shielding materials - aluminium and polyethylene. On the whole, the present study not only demonstrates the employment prospects of eco-friendly perovskites for shielding space radiations but also suggests future prospects for research in this direction.

Mineralogy and Geochemistry of Green-colored Cr-bearing Sericite from Hydrothermal Alteration Zone of the Narim Gold Deposit, Korea (나림 금광상의 열수변질대에서 산출되는 녹색크롬-견운모의 광물학적 및 지구화학적 특징)

  • Lee, Hyun Koo;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.30 no.4
    • /
    • pp.279-289
    • /
    • 1997
  • Dark to pale green-colored, Cr-bearing sericites from hydrothermal alteration zone of the Narim gold deposit were investigated mineralogically and geochemically. The alteration zone is composed mineralogically of quartz, carbonate minerals and green sericite with minor amounts of chlorite, barite and sulfide minerals (pyrite, sphalerite, galena). The zone is enriched in As (967 to 1520 ppm), Cu (31 to 289 ppm), Ni (1027 to 1205 ppm), Pb (0.20 to 1.24 wt.%) and Zn (1.03 to 1.07 wt. %) compared with fresh rocks such as granitic gneiss, porphyritic biotite granite and basic dyke. The Cr, probably the chromophore element, is highly enriched in the alteration zone (1140 to 1500 ppm), host granitic gneiss (1200 ppm) and porphyritic biotite granite (1200 ppm). Occurrence and grain size of sericite are diverse, but most of the Cr-bearing sericites (150 to $200{\mu}m$ long and 20 to $30{\mu}m$ wide) occur along the boundaries between ore veins and host rocks (especially basic dyke and granitic gneiss). X-ray diffraction data of the sericite show its monoclinic form with unit-cell parameters of $a=5.202{\AA}$, $b=8.994{\AA}$, $c=20.103{\AA}$, ${\beta}=95.746^{\circ}$ and $V=935.83{\AA}^3$, which are similar with the normal 2M1-type muscovite. Representative chemical formula of the sericite is ($K_{1.54}Ca_{0.03}Na_{0.01}$)($Al_{3.42}Mg_{0.38}Cr_{0.14}Fe_{0.06}V_{0.02}$)($Si_{6.69}Al_{1.31}$)$O_{20}(OH)_4$. The Cr content increases with decrease of the octahedral Al content, and ranges from 0.36 to 2.58 wt.%. DTA and TG curves of the sericite show endothermic peaks at $342^{\circ}$ to $510^{\circ}$, $716^{\circ}$ to $853^{\circ}$ and $1021^{\circ}C$, which are due to the expulsion of hydroxyl group. The total weight loss by heating is measured to be about 8.8 wt. %, especially at $730^{\circ}C$. Infrared absorption experiments of the sericite show broad absorption band due to the O-H bond stretching vibration near the $3625cm^{-1}$, coupled with the 825 and $750cm^{-1}$ doublet. The vibration bands related with the H-O-Al and Si-O-Al bonds occur at $1030cm^{-1}$ and 500 to $700cm^{-1}$, respectively. Based on paragonite content of the sericite, the formation temperature of the Narim gold deposit is calculated to be $220{\pm}10^{\circ}C$.

  • PDF

Sources Apportionment Estimation of Ambient PM2.5 and Identification of Combustion Sources by Using Concentration Ratios of PAHs (대기 중 PM2.5의 오염기여도 추정 및 PAHs 농도비를 이용한 연소 오염원 확인)

  • Kim, Do-Kyun;Lee, Tae-Jung;Kim, Seong-Cheon;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.538-555
    • /
    • 2012
  • The purpose of this study was to understand $PM_{2.5}$ chemical characteristics on the Suwon/Yongin area and further to quantitatively estimate $PM_{2.5}$ source contributions. The $PM_{2.5}$ sampling was carried out by a high-volume air sampler at the Kyung Hee University-Global Campus from November, 2010 to October, 2011. The 40 chemical species were then analyzed by using ICP-AES(Ag, Ba, Cr, Cu, Fe, Mn, Ni, Pb, Si, Ti, V and Zn), IC ($Na^+$, $K^+$, $NH_4{^+}$, $Mg^{2+}$, $Ca^{2+}$, $NO_3{^-}$, ${SO_4}^{2-}$ and $Cl^-$), DRI/OGC (OC1, OC2, OC3, OC4, OP, EC1, EC2 and EC3) and GC-FID (acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, benzo[b]fluoranthene, benzo[a] pyrene, indeno[1,2,3-cd] pyrene, benzo[g,h,i]perylene and dibenzo[a,h,]anthracene). When applying PMF model after performing proper data treatment, a total of 10 sources was identified and their contributions were quantitatively estimated. The average contribution to $PM_{2.5}$ emitted from each source was determined as follows; 26.3% from secondary aerosol source, 15.5% from soil and road dust emission, 15.3% from vehicle emission, 15.3% from illegal biomass burning, 12.2% from incineration, 7.2% from oil combustion source, 4.9% from industrial related source, and finally 3.2% from coal combustion source. In this study we used the ratios of PAHs concentration as markers to double check whether the sources were reasonably classified or not. Finally we provided basic information on the major $PM_{2.5}$ sources in order to improve the air quality in the study area.

Size-resolved Source Apportionment of Ambient Particles by Positive Matrix Factorization at Gosan, Jeju Island during ACE-Asia (PMF 분석을 이용한 ACE-Asia 측정기간 중 제주 고산지역 입자상 물질의 입경별 발생원 추정)

  • Moon K.J.;Han, J.S.;Kong, B.J.;Jung, I.R.;Cliff Steven S.;Cahill Thomas A.;Perry Kelvin D.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.590-603
    • /
    • 2006
  • Size-and time-resolved aerosol samples were collected using an eight-stage Davis rotating unit for monitoring (DRUM) sampler from 23 March to 29 April 2001 at Gosan, Jeju Island, Korea, which is one of the super sites of Asia-Pacific Regional Aerosol Characterization Experiment(ACE-Asia). These samples were analyzed using synchrotron X-ray fluorescence for 3-hr average concentrations of 19 elements including Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, and Pb. The size-resolved data sets were then analyzed using the positive matrix factorization(PMF) technique to identify possible sources and estimate their contributions to particulate matter mass. PMF analysis uses the uncertainty of the measured data to provide an optimal weighting. Twelve sources were resolved in eight size ranges($0.09{\sim}12{\mu}m$) and included continental soil, local soil, sea salt, biomass/biofuel burning, coal combustion, oil combustion, municipal incineration, nonferrous metal source, ferrous metal source, gasoline vehicle, diesel vehicle, and volcanic emission. The PMF result of size-resolved source contributions showed that natural sources represented by local soil, sea salt, continental soil, and volcanic emission contributed about 79% to the predicted primary particulate matter(PM) mass in the coarse size range ($1.15{\sim}12{\mu}m$) while anthropogenic sources such as coal combustion and biomass/biofuel burning contributed about 58% in the fine size range($0.56{\sim}2.5{\mu}m$). The diesel vehicle source contributed mostly in ultra-fine size range($0.09{\sim}0.56{\mu}m$) and was responsible for about 56% of the primary PM mass.