• 제목/요약/키워드: NiFe particles

검색결과 144건 처리시간 0.023초

Synthesis of Metal and Ceramic Magnetic Nanoparticles by Levitational Gas Condensation (LGC)

  • Uhm, Y.R.;Lee, H.M.;Lee, G.J.;Rhee, C.K.
    • Journal of Magnetics
    • /
    • 제14권2호
    • /
    • pp.75-79
    • /
    • 2009
  • Nickel (Ni) and ferrite ($Fe_3O_4$, $NiFe_2O_4$) nanoparticles were synthesized by LGC using both wire feeding (WF) and micron powder feeding (MPF) systems. Phase evolution and magnetic properties were then investigated. The Ni nanopowder included magnetic-ordered phases. The LGC synthesis yielded spherical particles with large coercivity while the abnormal initial magnetization curve for Ni indicated a non-collinear magnetic structure between the core and surface layer of the particles. Since the XRD pattern cannot actually distinguish between magnetite ($Fe_3O_4$) and maghemite (${\gamma}-Fe_2O_3$) as they have a spinel type structure, the phase of the iron oxide in the samples was unveiled by $M{\ddot{o}}ssbauer$ spectroscopy. The synthesized Ni-ferrite consisted of single domain particles, including an unusual ionic state. The synthesized nanopowder bore an active surface due to the defects that affected abnormal magnetic properties.

ANALYSIS OF THE PHASE STABILITY OF FINE $Fe_{90}Ni_{10}$ ALLOY PARTICLES

  • Widatallah, H.M.;Huang, R.S.;Hsia, Y.F.;Lee, X.M.;Wang, J.H.;Lu, H.X.
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.543-547
    • /
    • 1995
  • A set of $Fe_{1-x}Ni_{x}$ (x=0.10, 0.25, 0.30, 0.35, 0.50, 0.60, 0.75, 0.85) fine particles prepared by the gas evaporation technique was studied by $M\"{o}ssbauer$, XRD and other techniques. The XRD and $M\"{o}ssbauer$ patterns of the sample with x=0.10 ($Fe_{90}Ni_{10}$) were found to be exceptionally different, showing an austenite phase stability when the particles are quenched. This phase stability is quite different from that of the corresponding bulk alloy. Using binomial distrbution fits of the $M\"{o}ssbauer$ spectra of the particles in terms of nearest and next nearest neighbour configurations around the Fe atoms, an analysis of this phase stability is given. The changes in the relative intensities of the resulting magnetic sextets are used to determine the increase in martensite following the austenite-martensite transformation process. The stable austenite can, therefore, be determined. This stability may be related to the oxide surface layer and the small number of atoms of these fine particles.

  • PDF

산화물 수소환원에 의한 W-Ni-Fe 나노복합분말의 합성과 특성 (Synthesis and Characteristics of W-Ni-Fe Nanocomposite Powder by Hydrogen Reduction of Oxides)

  • 이창우;윤의식;이재성
    • 한국분말재료학회지
    • /
    • 제8권1호
    • /
    • pp.49-54
    • /
    • 2001
  • The synthesis and characteristics of W-Ni-Fe nanocomposite powder by hydrogen reduction of ball milled W-Ni-Fe oxide mixture were investigated. The ball milled oxide mixture was prepared by high energy attrition milling of W blue powder, NiO and $Fe_2O_3$ for 1 h. The structure of the oxide mixture was characteristic of nano porous agglomerate composite powder consisting of nanoscale particles and pores which act as effective removal path of water vapor during hydrogen reduction process. The reduction experiment showed that the reduction reaction starts from NiO, followed by $Fe_2O_3$ and finally W oxide. It was also found that during the reduction process rapid alloying of Ni-Fe yielded the formation of $\gamma$-Ni-Fe. After reduction at 80$0^{\circ}C$ for 1 h, the nano-composite powder of W-4.57Ni-2.34Fe comprising W and $\gamma$-Ni-Fe phases was produced, of which grain size was35nm for W and 87 nm for $\gamma$-Ni-Fe, respectively. Sinterability of the W heavy alloy nanopowder showing full density and sound microstructure under the condition of 147$0^{\circ}C$/20 min is thought to be suitable for raw material for powder injection molding of tungsten heavy alloy.

  • PDF

급속소결에 의해 제조된 Al2O3/Fe-Ni 나노복합재료의 미세조직 및 기계적 특성 (Microstructure and Mechanical Properties of Al2O3/Fe-Ni Nanocomposite Prepared by Rapid Sintering)

  • 이영인;이근재;장대환;양재교;좌용호
    • 한국분말재료학회지
    • /
    • 제17권3호
    • /
    • pp.203-208
    • /
    • 2010
  • A new High Frequency Induction Heating (HFIH) process has been developed to fabricate dense $Al_2O_3$ reinforced with Fe-Ni magnetic metal dispersion particles. The process is based on the reduction of metal oxide particles immediately prior to sintering. The synthesized $Al_2O_3$/Fe-Ni nanocomposite powders were formed directly from the selective reduction of metal oxide powders, such as NiO and $Fe_2O_3$. Dense $Al_2O_3$/Fe-Ni nanocomposite was fabricated using the HFIH method with an extremely high heating rate of $2000^{\circ}C/min$. Phase identification and microstructure of nanocomposite powders and sintered specimens were determined by X-ray diffraction and SEM and TEM, respectively. Vickers hardness experiment were performed to investigate the mechanical properties of the $Al_2O_3$/Fe-Ni nanocomposite.

액중 전기선 폭발 공정을 이용한 Pt/alloy 하이브리드 나노입자의 제조 및 그 특성 (Synthesis of Pt/alloy Nanoparticles by Electrical Wire Explosion in Liquid Media and its Characteristics)

  • 구혜영;윤중열;양상선;이혜문
    • 한국입자에어로졸학회지
    • /
    • 제8권2호
    • /
    • pp.83-88
    • /
    • 2012
  • The electrical wire explosion process in liquid media is promising for nano-sized metal and/or alloy particles. The hybrid Pt/Fe-Cr-Al and Pt/Ni-Cr-Fe nanoparticles for exhaust emission control system are synthesized by electrical wire explosion process in liquid media. The alloy powders have spherical shape and nanometer size. According to the wire component, while Pt/Fe-Cr-Al nanoparticles are shown the well dispersed Pt on the Fe-Cr-Al core particle, Pt/Ni-Cr-Fe nanoparticles are shown the partially separated Pt on the Ni-Cr-Fe core particle. Morphologies and component of two kinds of hybrid nano catalyst particles were characterized by transmission electron microscope and energy dispersive X-ray spectroscopy analysis.

Processing of Nano-Sized Metal Alloy Dispersed $Al_2O_3$ Nanocomposites

  • Oh, Sung-Tag;Seok Namkung;Lee, Jai-Sung;Kim, Hyoung-Seop;Tohru Sekino
    • 한국분말재료학회지
    • /
    • 제8권3호
    • /
    • pp.157-162
    • /
    • 2001
  • An optimum route to fabricate the ferrous alloy dispersed $Al_2O_3$ nanocomposites such as $Al_2O_3$/Fe-Ni and $Al_2O_3$/Fe-Co with sound microstructure and desired properties was investigated. The composites were fabricated by the sintering of powder mixtures of $Al_2O_3$ and nano-sized ferrous alloy, in which the alloy was prepared by solution-chemistry routes using metal nitrates powders and a subsequent hydorgen reduction process. Microstructural observation of reduced powder mixture revealed that the Fe-Ni or Fe-Co alloy particles of about 20 nm in size homogeneously surrounded $Al_2O_3$, forming nanocomposite powder. The sintered $Al_2O_3$/Fe-Ni composite showed the formation of Fe$Al_2O_4$ phase, while the reaction phases were not observed in $Al_2O_3$/Fe-Co composite. Hot-pressed $Al_2O_3$/Fe-Ni composite showed improved mechanical properties and magnetic response. The properties are discussed in terms of microstructural characteristics such as the distribution and size of alloy particles.

  • PDF

Ni-Fe 합금입자 분산 Al2O3 나노복합재료의 미세조직 및 특성 (Microstructure and Properties of Nano-Sized Ni-Fe Alloy Dispersed Al2O3 Composites)

  • 남궁석;정재영;오승탁;이재성;이홍재;정영근
    • 한국분말재료학회지
    • /
    • 제9권3호
    • /
    • pp.161-166
    • /
    • 2002
  • Processing and properties of $Al_2O_3$ composites with Ni-Fe content of 10 and 15 wt% were investigated. Homogeneous powder mixtures of $Al_2O_3$/Ni-Fe alloy were prepared by the solution-chemistry route using $Al_2O_3$, $Ni(NO_3)_2{\cdot}6H_2O$ and $Fe(NO_3)_3{\cdot}9H_2O$ powders. Microstructural observation of composite powder revealed that Ni-Fe alloy particles with a size of 20nm were homogeneously dispersed on $Al_2O_3$ powder surfaces. Hot-pressed composites showed enhanced fracture toughness and magnetic response. The properties are discussed based on the observed microstructural characteristics.

大氣中 重金屬의 粒經分布에 關한 硏究 (Studies on Particle Size Distribution of Heavy Metals in the Atmosphere)

  • 손동헌;강춘원
    • 한국대기환경학회지
    • /
    • 제2권3호
    • /
    • pp.57-63
    • /
    • 1986
  • Atmospheric particulate matter (A.P.M.) was collected on quartz fiber filters from March 1985 to May 1986 according to particle size using Andersen high-volume air sampler, and 6 heavy metals (Fe, Mn, Cu, Ni, Zn, Pb) in these particulates were analyzed by atomic absorption spectrophotometry. The arithmetic mean concentration of A.P.M. was 195.57$\mug/m^3$. The arithmetic mean concentrations of 6 metals (Fe, Mn, Cu, Ni, Zn and Pb) were 3385.04, 1451.67, 897.94, 159.68, 127.14 and 59.49 $ng/m^3$ respectively. The order of heavy metals contributing to A.P.M. was as follows: Fe > Zn > Pb > Cu > Mn > Ni. These heavy metals were devided into 3 groups according to their particle size distribution. The contents of heavy metals belonging to the 1st group (Fe, Mn) were increased with the particle size. On the contrary, the content of Pb belonging to the 2nd group (Pb) was increased with the decrease in the particle size. The heavy metal contents in the 3rd group (Ni, Cu, Zn) were lowest in the particle size range of 2.0-3.3 $\mum$ compared with particles larger or smaller tha this range. The seasonal variation of heavy metal concentration were as follows: Fe and Mn contents were highest in spring, but Ni and Pb contents were highest in winter. Statistical analysis showed that there was a significant correlation between A.P.M. and Fe in coarse particles, meanwhile between A.P.M. and Pb in the case of fine particles.

  • PDF

다양한 발열체가 분산된 폴리우레탄 접착 필름의 유도가열 거동 비교 (Comparison of Heating Behavior of Various Susceptor-embedded Thermoplastic Polyurethane Adhesive Films via Induction Heating)

  • 권용성;배덕환;손민영
    • Composites Research
    • /
    • 제30권3호
    • /
    • pp.181-187
    • /
    • 2017
  • 나노 및 마이크로 크기의 철(Fe), 마그네타이트($Fe_3O_4$) 및 니켈(Ni) 입자가 분산된 열가소성 폴리우레탄(TPU) 접착필름에서 각 금속의 크기 및 형상 그리고 피착재의 종류에 따른 접착필름의 유도가열 거동을 연구하였다. 연구결과 동일한 첨가량 및 유사한 입자 크기에서 철과 니켈이 분산된 열가소성 TPU 접착필름에 비해 마그네타이트가 분산된 TPU 접착필름의 발열이 높게 나타났다. 철과 니켈의 입자 크기가 자기장의 표면 침투 깊이(Penetration skin depth) 보다 클 경우 와전류에 의한 발열로 인해 입자 크기가 커질수록 초기 승온속도와 최고 온도가 증가하는 것을 확인하였다. 서로 다른 형태를 갖는 니켈 입자를 사용한 유도가열 실험 결과 편상(flake)의 입자가 TPU 접착필름에 분산되었을 때 자기이력(Magnetic hysteresis)에 의한 열 발생으로 가장 높은 발열이 나타남을 알 수 있었다. 또한 금속 입자가 분산된 TPU 접착필름이 서로 다른 피착재에 적용되었을 때 발열현상이 상이하게 나타났으며 피착재의 열전도도에 따른 결과를 확인하였다.

Ni-22Cr-18Fe-9Mo계 ODS 합금의 미세조직 및 고온인장 특성 평가 (Microstructural Evaluation and High Temperature Mechanical Properties of Ni-22Cr-18Fe-9Mo ODS Alloy)

  • 정석환;강석훈;한창희;김태규;김도향;장진성
    • 한국분말재료학회지
    • /
    • 제18권5호
    • /
    • pp.456-462
    • /
    • 2011
  • Yttrium oxide is one of the most thermo-dynamically stable materials, so that it is generally used as a dispersoid in many kinds of dispersion strengthed alloys. In this study, a nickel-base superalloy is strengthened by dispersion of yttrium oxide particles. Elemental powders with the composition of Ni-22Cr-18Fe-9Mo were mechanically alloyed(M.A.) with 0.6 wt% $Y_2O_3$. The MA powders were then HIP(hot isotactic press)ed and hot rolled. Most oxide particles in Ni-22Cr-18Fe-9Mo base ODS alloy were found to be Y-Ti-O type. The oxide particles were uniformly dispersed in the matrix and also on the grain boundaries. Tensile test results show that the yield strength and ultimate tensile strength of ODS alloy specimens were 1.2~1.7 times higher than those of the conventional $Hastelloy^{TM}$ X(R), which has the same chemical compositions with ODS alloy specimens except the oxide particles.