• Title/Summary/Keyword: NiFe alloy

Search Result 452, Processing Time 0.028 seconds

Effect of Sulfur Contents and Welding Thermal Cycles on Reheat Cracking Susceptibility in Multi-pass Weld Metal of Fe-36%Ni Alloy

  • Mori, Hiroaki;Nishimoto, Kazutoshi
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.377-379
    • /
    • 2005
  • This study has been conducted to clarify the effect of sulfur content and welding thermal cycles on reheat cracking susceptibility in the multi-pass weld metal of Fe-36%Ni alloy. Reheat cracking occurred in the preceding weld pass reheated by subsequent passes. Microscopic observations showed that reheat cracking propagated along grain boundaries which resulted in intergranular brittle fractures. The region where reheat cracking occurred and the number of cracks increased with the increase in sulfur content of the alloys. These experimental results suggested that reheat cracking was associated with the embrittlement of grain boundaries, which was promoted by sulfur and subsequent welding thermal cycles. AES analysis indicated that the sulfur segregation occurred at grain boundaries in the reheated weld metal. On the basis of these results, the cause of reheat cracking in multi-pass welding can be attributed to hot ductility loss of weld metals due to sulfur segregation which was accelerated by the reheating with multi-pass welding thermal cycles.

  • PDF

Fabrication of Low Carbon Steel Coated with 18%Cr-2.5%Ni-Fe Powder by Laser Cladding and Its Application on Plastic Injection Mold for Aluminum Diecasting

  • Kim, Cheol-Woo;Yoo, Hyo-Sang;Cho, Kyun-Taek;Jeon, Jae-Yeol;Choi, Se-Weon;Kim, Young-Chan
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.601-607
    • /
    • 2021
  • Laser cladding a surface treatment process that grants superior characteristics such as toughness, hardness, and corrosion resistance to the surface, and rebuilds cracked molds; as such, it can be a strong tool to prolong service life of mold steel. Furthermore, compared with the other similar coating processes - thermal spray, etc., laser cladding provides superior bonding strength and precision coating on a local area. In this study, surface characteristics are studied after laser cladding of low carbon steel using 18%Cr-2.5%Ni-Fe powder (Rockit404), known for its high hardness and excellent corrosion resistance. A diode laser with wavelength of 900-1070 nm is adopted as laser source under argon atmosphere; electrical power for the laser cladding process is 5, 6, and 10 kW. Fundamental surface characteristics such as crossectional microstructure and hardness profile are observed and measured, and special evaluation, such as a soldering test with molten ALDC12 alloy, is conducted to investigate the corrosion resistance characteristics. As a result of the die-soldering test by immersion of low carbon alloy steel in ALDC12 molten metal, the clad layer's soldering thickness decreases.

Fabrication Process and Mechanical Properties of Co-based Metal Bond in Diamond Impregnated Tools (다이아몬드 공구용 코발트계 합금 결합제의 제조 및 기계적 성질)

  • Lee, Gi-Seon;Jeong, Seung-Bu
    • Korean Journal of Materials Research
    • /
    • v.10 no.8
    • /
    • pp.532-539
    • /
    • 2000
  • Co-0.5C-(15~20)Cr-20Ni-8W-(2~7)Fe alloy bond in diamond-impregnated abrasive tool was synthesized by ball-milling and mechanical alloying process. When the powders were mechanical alloyed for 6h, micro-welding in most metal powders was observed irrespective of addition of stearic acid. Without stearic acid in metal powders, partial-ly coarse powders were obtained, which could be unfaverable to the densification of composite of composite powders. The hot-pressed compacts showed rupture strength of 1100MPa and hardness of about $46H_{RC}$, respectively.

  • PDF

Improvement of the Resistance to Cavitation Erosion by the Formation of $\beta$' Martensite in Flame-Quenched Cu-9Al-4.5Ni-4.5Fe Alloys (화염급냉 표면처리된 Cu-9Al-4.5Ni-4.5Fe 합금의 $\beta$' 마르텐사이트 형성에 의한 케비테이션 침식 저항성 향상에 관한 연구)

  • 홍성모;이민구;김광호;김경호;김흥회;홍순익
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.4
    • /
    • pp.234-241
    • /
    • 2004
  • Cavitation erosion properties of the Cu-9Al-4.5Ni-4.5Fe alloys (Al-bronze) surface-modified by flame quenching process have been investigated. After flame quenching at above $T_{\beta}$, the surfaces of Al-bronze with $\alpha$ + $\textsc{k}$ structure have been changed into the $\alpha$ + $\beta$' martensite phases by the eutectoid reaction of $\alpha$ + $\textsc{k}$\longrightarrow$\beta$ followed by the martensite transformation of $\beta$\longrightarrow$\beta$'. As a result of cavitation test, the measured incubation time and erosion rate of the $\alpha$ + $\beta$' alloy was 1.2 times higher and 1.5 times lower, respectively, compared to those of the conventional $\alpha$ + $\textsc{k}$ alloys, showing a remarkable increase of cavitation resistance with the formation of $\beta$' martensite. This is attributed to a preferential erosion of the $\textsc{k}$ precipitates that show the lowest resistance among the $\alpha$, $\textsc{k}$, $\beta$' phases under cavitation loading.ases under cavitation loading.

A Study on Fabrication of Magnetic Thin Film Inductors for DC-DC Converter

  • Lee, Young-Ae;Kim, Sang-Gi;Do, Seung-Woo;Lee, Yong-Hyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.225-225
    • /
    • 2010
  • In this study, the optimum structure of a magnetic thin film inductor was designed for application of DC-DC converters. The $Ni_{81}Fe_{19}$ (at%) alloy was selected as a high-frequency($\geq$ MHz) magnetic thin film core material and deposited on various substrates (bare Si, $SiO_2$ coated Si) using a high vacuum RF magnetron sputtering system. As-deposited NiFe thin films show similar magnetic properties compared to bulk NiFe alloys, indicating that they have a good film quality. The optimum design of solenoid-type magnetic thin film inductors was performed utilizing a Maxwell computer simulator (Ansoft HFSS V7.0 for PC) and parameters obtained from the magnetic properties of magnetic core materials selected. The high-frequency characteristics of the inductance(L) and quality factor(Q) obtained for the designed inductors through simulation agreed well with those obtained by theoretical calculations, confirming that the simulated result is realistic. The optimum structure of high-performance ($Q{\geq}60$, $L\;=\;1{\mu}H$, efficiency${\geq}90%$), high-frequency (${\geq}5MHz$), and solenoid-type magnetic thin film inductors was designed successfully.

  • PDF

Growth of Vertically Aligned Carbon Nanotubes on Co-Ni Alloy Metal (Co-Ni 합금위에서 수직방향으로 정렬된 탄소나노튜브의 성장)

  • Ryu, Jae-Eun;Lee, Cheol-Jin;Lee, Tae-Jae;Son, Gyeong-Hui;Sin, Dong-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.8
    • /
    • pp.451-454
    • /
    • 2000
  • We have grown vertically aligned carbon nanotubes in a large area of Co-Ni codeposited Si substrates by the thermal CVD usign $C_2H_2$ gas. Since the discovery of carbon nanotubes, growth of carbon nanotubes has been achieved by several methods such as laser vaporization, arc discharge, and pyrolysis. In particular, growth of vertically aligned nanotubes is important to flat panel display applications. Recently, vertically aligned carbon nanotubes have been grown on glass by PECVD. Aligned carbon nanotubes can be also grown on mesoporous silica and Fe patterned porous silicon using CVD. In this paper, we demonstrate that carbon nanotubes can be vertically aligned on catalyzed Si substrate when the domain density of catalytic particles reaches a certain value. We suggest that steric hindrance between nanotubes at an initial stage of the growth forces nanotubes to align vertically and each nonotubes are grown in bundle.

  • PDF

Aluminizing of Incoroy 909 Alloy by Pack Cementation Method (팩 세멘테이션법에 의한 Incoloy 909 합금의 알루미나이징)

  • Ahn, Jin-Sung;Kwon, Soon-Woo;Yoon, Jae-Hong;Park, Bong-Gyu
    • Journal of Surface Science and Engineering
    • /
    • v.39 no.4
    • /
    • pp.173-178
    • /
    • 2006
  • Incoloy alloy 909 is an Fe-Ni-Co based superalloy that is attractive for gas turbine engine applications. The absence of chromium, however, makes the alloy more susceptible to oxidation in high temperature. To improve the oxidation resistance aluminizing was performed by high activity low temperature pack cementation process. Aluminizing condition was examined with different times and temperatures. Optimum aluminizing conditions were at the temperature of $552^{\circ}C$ for 20 hrs. In the optimized condition, the thickness of the aluminized layer was about $20{\mu}m$. Also, the aluminized layer made the alloy to increase the resistance to the corrosion.

Effect of Melt-Spinning Process on Hydrogen Storage Properties of Mass-Produced Ti0.85Zr0.13(Fex-V)0.56Mn1.47Ni0.05 Alloy (대량용해 Ti0.85Zr0.13(Fex-V)0.56Mn1.47Ni0.05 수소저장합금의 용융방사공정을 통한 수소저장특성)

  • Kim, Jinho;Han, Kyusung
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.5
    • /
    • pp.367-372
    • /
    • 2013
  • Hydrogen storage as a metal hydride is the most promising alternative because of its relatively large hydrogen storage capacities near room temperature. TiMn2-based C14 Laves phases alloys are one of the promising hydrogen storage materials with easy activation, good hydriding-dehydriding kinetics, high hydrogen storage capacity and relatively low cost. In this work, multi-component, hyper-stoichiometric $Ti_{0.85}Zr_{0.13}(Fe_x-V)_{0.56}Mn_{1.47}Ni_{0.05}$ C14 Laves phase alloys were prepared by a vacuum induction melting for a hydrogen storage tank. Since pure vanadium (V) is quite expensive, the substitution of the V element in these alloys has been tried and some interesting results were achieved by replacing V by commercial ferrovanadium (FeV) raw material. In addition, the melt-spinning process, which was applied to the manufacturing of some of these alloys, could make the plateau slopes much flatter, which resulted in the increase of reversible hydrogen storage capacity. The improvement of sloping properties of melt-spun $Ti_{0.85}Zr_{0.13}(Fe_x-V)_{0.56}Mn_{1.47}Ni_{0.05}$ alloys was mainly attributed to the homogeneity of chemical composition.

Spark Plasma Sintering of Fe-Ni-Cu-Mo-C Low Alloy Steel Powder

  • Nguyen, Hong-Hai;Nguyen, Minh-Thuyet;Kim, Won Joo;Kim, Ho Yoon;Park, Sung Gye;Kim, Jin-Chun
    • Journal of Powder Materials
    • /
    • v.23 no.3
    • /
    • pp.207-212
    • /
    • 2016
  • In this study, Fe-Cu-Ni-Mo-C low alloy steel powder is consolidated by spark plasma sintering (SPS) process. The internal structure and the surface fracture behavior are studied using field-emission scanning electron microscopy and optical microscopy techniques. The bulk samples are polished and etched in order to observe the internal structure. The sample sintered at $900^{\circ}C$ with holding time of 10 minutes achieves nearly full density of 98.9% while the density of the as-received conventionally sintered product is 90.3%. The fracture microstructures indicate that the sample prepared at $900^{\circ}C$ by the SPS process is hard to break out because of the presence of both grain boundaries and internal particle fractures. Moreover, the lamellar pearlite structure is also observed in this sample. The samples sintered at 1000 and $1100^{\circ}C$ exhibit a large number of tiny particles and pores due to the melting of Cu and aggregation of the alloy elements during the SPS process. The highest hardness value of 296.52 HV is observed for the sample sintered at $900^{\circ}C$ with holding time of 10 minutes.

A Study of Dissimilar Weldability of Incoloy 825 with Mild Steel (Incoloy 825합금 및 탄소강의 이종강종간 용접특성 연구)

  • Kim, Hui-Bong;Lee, Chang-Hui
    • Korean Journal of Materials Research
    • /
    • v.7 no.2
    • /
    • pp.162-170
    • /
    • 1997
  • This study has evaluated the dissimialr weldability of Incoloy 825 Ni base alloy with a mild steel(SS41). Further a compatibility study of wrveral Ni base filler metals with the dissimilar joint between the two alloys was also included. The dissimilar weldability of Incoloy 825 with mild steel is strongly dependent upon the type of the filler metal used. Among the filler metals, ENiCrFe which has a chemical comosition similar to that of Incoloy 825 was found to be most compatible to the joint. In addition, a filler metal which showed a good cracing resistance in one dissimiar alloy combination was not necessarily graranteed to other combination. Microstructural examination with SEM, TEM and Auger revealed that the solidification cracking resestance of the dissimilar joint. between Incoloy 835 and SS41 was closely with the Ti+Nb content and with the content of a low melting eutectic phase of Laves relatibve to that of MC type phase.

  • PDF