• Title/Summary/Keyword: NiFe 분말

Search Result 229, Processing Time 0.028 seconds

Magnetic Properties of NixFe100-x(x=40~50) Permalloy Powders and Dust Cores Prepared by Gas-Atomization (가스 분무법으로 제조된 NixFe100-x(x=40~50) 퍼멀로이 분말 및 압분 코아의 자기적 특성)

  • Noh, T.H.;Kim, G.H.;Choi, G.B.;Kim, K.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.6
    • /
    • pp.218-223
    • /
    • 2002
  • We investigated the magnetic properties of High Flux-type $Ni_{x}Fe_{100-x}$(x=40∼50, wt.%) permalloy powders and dust cores. The powder was prepared by conventional gas atomization in mass production scale. At the composition of $Ni_{x}Fe_{55}$, saturation magnetization was maximum. In case of lower Ni content than X=45, the $M_{s}$, decreased largely with the decrease in Ni content, which is due to the invar effect. The permeability of compressed powder cores increased with the decrease in Ni content, which was considered to be due to the decrease in the magnetostriction. In addition, the dust core with Ni=45% showed the lowest core loss because of the increase in electrical resistivity leading to the low eddy current loss. From the better frequency dependence of permeability, larger Q value and superior DC bias characteristics of Ni=45% than those of Ni=50% core, it was confirmed that the 45%Ni-55%Fe powder alloy was better material for the dust core than commercial High Flux core materials.

A Study of Production, Hot Consolidation, Secondary Recrystallization and Mechnical Property Assesment of Mechanically Alloyed $NiAl-Fe-AiN-Al_2O_3$ (기계적 합금화에 의한 $NiAl-Fe-AIN-Al_2O_3$ 합금분말의 제조, 열간 성형, 이차재결정화 및 기계적 성질 평가에 관한 연구)

  • 이순철
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.111-118
    • /
    • 1999
  • Ni(Fe)Al powders containing a homogeneous distribution of the in-situ formed AIN and $Al_2O_3$ dispersoids have been produced by mechanical alloying process in a controlled atmosphere using high energy attrition mill. The powders have been successfully consolidated by hot extrusion process. The phase information investigated by TEM and XRD analysis reveals that Fe can be soluble up to 20% to the NiAl phase ($\beta$) at room temperature after MA process. Subsequent thermomechanical treatment under specific condition has been tried to induce secondary recrystallization (SRx) to improve high temperature properties, however, the clear evidence of SRx was not obtained in this material. Mechanical properties in term of strength at room temperature as well as at high temperatures have been improved by the addition pf AIN, and the room temperature ductility has been shown to be improved after heat treatment, presumably due to the precipitation of second phase of $\alpha$ in this material.

  • PDF

Precipitation Behavior of ${\gamma}"$ in Severely Plastic Deformed Ni-base Alloys

  • Kim, Il-Ho;Kwun, S.I.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.962-963
    • /
    • 2006
  • The precipitation behaviors of ${\gamma}"(Ni_3Nb)$ in four Ni-base alloys were investigated. The four alloys were forged Ni20Cr20Fe5Nb alloy, mechanically alloyed Ni20Cr20Fe5Nb alloy, IN 718 alloy and ECAPed(equal channel angular pressing) IN 718 alloy. Aging treatment was employed at either $600^{\circ}C$ or $720^{\circ}C$ for 20 hrs. The TEM observation and hardness test were performed to identify the formation of ${\gamma}"$. The precipitation of ${\gamma}"$ was noticed after aging at $600^{\circ}C$ for 20 hrs in the mechanically alloyed Ni20Cr20Fe5Nb alloy and ECAPed IN 718 alloy, while it was observed after aging at $720^{\circ}C$ for 20 hrs in the forged Ni20Cr20Fe5Nb alloy and IN 718 alloy before ECAP. The lower aging temperature for ${\gamma}"$ precipitation in the mechanically alloyed Ni20Cr20Fe5Nb alloy and ECAPed IN 718 alloy than in the forged Ni20Cr20Fe5Nb alloy and IN 718 alloy before ECAP appeared to be due to the severe plastic deformation which occurred during mechanical alloying or ECAP.

  • PDF

Fabrication of Al2O3/Fe-Ni Nanocomposites by Pressureless Sintering and their Magnetic Properties (상압소결에 의한 Al2O3/Fe-Ni 나노복합재료의 제조 및 자기적 특징)

  • Lee, Hong-Jae;Jeong, Young-Keun;NamKung, Seok;Oh, Sung-Tag;Lee, Jai-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.769-774
    • /
    • 2002
  • The powder mixture in which Fe-Ni alloy particles of 20 nm were homogeneously dispersed on $Al_2O_3$ particle surfaces was prepared by hydrogen reduction of $Al_2O_3$ and metal oxide powders. $Al_2O_3$/Fe-Ni nanocomposites fabricated by pressureless sintering were only composed of $Al_2O_3$ and ${gamma}$-Fe-Ni phases and achieved over 98% of the theoretical density at the sintering temperature above $1350^{\circ}C$. The highest strength and toughness of the composites were 574 MPa and 3.9 MP$a{\cdot}m1/2$, respectively. These values were about 20% higher than these of monolithic $Al_2O_3$ sintered at the same conditions. Nanocomposites showed ferromagnetic properties and coercive force was increased with decrease of the average particle size of dispersions.

Fabrication of Injection Molded Fe-50%Ni Sintered Bodies (사출성형된 Fe-50%Ni 소결체의 제조)

  • Kim Ki-Hyun;Yoon Hyeong-Chul;Choi Chul-Jin;Lee Byong-Taek
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.472-476
    • /
    • 2004
  • The Fe-Ni compact bodies were fabricated using Fe-Ni mixed powders with 50 nm in diameter by injection molding process. The relationship between microstructure and material properties was characterized with respect to the volume ratio of powder/binder and sintering temperature with SEM and TEM. In the compact body having the volume percent ratio of 45(Fe-Ni) : 55(binder), which was sintered at $900^{\circ}C$ the values of relative density and hardness were low about 97.7% and 277.1 Hv, respectively. Using the composition of 50(Fe Ni) : 50(binder) and sintered at $900^{\circ}C$, the values of relative density and hardness were 98.5%, 294.4 Hv, respec-tively. The grain size of sintered bodies strongly depended on the sintering temperature. In both samples sintered at $600^{\circ}C$ and $900^{\circ}C$, the average grain sizes were about 150 nm and 500 nm in diameter, respectively.

Microwave Absorbance of Polymer Composites Containing SiC Fibers Coated with Ni-Fe Thin Films

  • Liu, Tian;Kim, Sung-Soo;Choi, Woo-cheal;Yoon, Byungil
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.375-378
    • /
    • 2018
  • Conductive and dielectric SiC are fabricated using electroless plating of Ni-Fe films on SiC chopped fibers to obtain lightweight and high-strength microwave absorbers. The electroless plating of Ni-Fe films is achieved using a two-step process of surface sensitizing and metal plating. The complex permeability and permittivity are measured for the composite specimens with the metalized SiC chopped fibers dispersed in a silicone rubber matrix. The original non-coated SiC fibers exhibit considerable dielectric losses. The complex permeability spectrum does not change significantly with the Ni-Fe coating. Moreover, dielectric constant is sensitively increased with Ni-Fe coating, owing to the increase of the space charge polarization. The improvements in absorption capability (lower reflection loss and small matching thickness) are evident with Ni-Fe coating on SiC fibers. For the composite SiC fibers coated with Ni-Fe thin films, a -35 dB reflection loss is predicted at 7.6 GHz with a matching thickness of 4 mm.