• Title/Summary/Keyword: Ni-based catalyst

Search Result 112, Processing Time 0.021 seconds

Gas Sensing Characteristics of SnO2 Coated with Catalyst for Hydrocarbon Gas (촉매가 첨가된 SnO2 가스센서의 탄화수소 가스에 대한 감응 특성)

  • Lee, Ji-Young;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.22 no.7
    • /
    • pp.358-361
    • /
    • 2012
  • Co and Ni as catalysts in $SnO_2$ sensors to improve the sensitivity for $CH_4$ gas and $CH_3CH_2CH_3$ gas were coated by a solution reduction method. $SnO_2$ thick films were prepared by a screen-printing method onto $Al_2O_3$ substrates with an electrode. The sensing characteristics were investigated by measuring the electrical resistance of each sensor in a chamber. The structural properties of $SnO_2$ with a rutile structure investigated by XRD showed a (110) dominant $SnO_2$ peak. The particle size of the $SnO_2$:Ni powders with Ni at 6 wt% was about 0.1 ${\mu}m$. The $SnO_2$ particles were found to contain many pores according to a SEM analysis. The sensitivity of $SnO_2$-based sensors was measured for 5 ppm of $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature by comparing the resistance in air to that in the target gases. The results showed that the best sensitivity of $SnO_2$:Ni and $SnO_2$:Co sensors for $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature was observed in $SnO_2$:Ni sensors coated with 6 wt% Ni. The $SnO_2$:Ni gas sensors showed good selectivity to $CH_4$ gas. The response time and recovery time of the $SnO_2$:Ni gas sensors for the $CH_4$ and $CH_3CH_2CH_3$ gases were 20 seconds and 9 seconds, respectively.

Synthesis and Application of Metal Doped Silica Particles for Adsorptive Desulphurization of Fuels

  • Jabeen, Bushra;Rafique, Uzaira
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.205-214
    • /
    • 2014
  • Petroleum a vital commodity affecting every aspect of 21st century. Toxicity and adverse effects of sulphur as catalyst in petroleum products is of great concern required development of techniques for desulphurization in compliance with the International standards. Installation of desulphurizing units costs over $200 million per unit placing economic burden on developing countries like Pakistan. Present study analysis of commercial fuels (station petrol and jet fuel JP8) on gas chromatography-mass spectrometry (GC-MS) identified sulphur concentration of 19.94 mg/L and 21.75 mg/L, respectively. This scenario urged the researcher to attempt synthesis of material that is likely to offer good adsorption capacity for sulphur. Following protocol of sol-gel method, transition metals (Ni, Cu, Zn) solution is gelated with tetraethoxysilane (TEOS; silica precursor) using glycerol. Fourier transform infrared spectroscopy (FTIR) spectra revealed bonding of Zn-O, Cu-O, and Ni-O by stretching vibrations at $468cm^{-1}$, $617cm^{-1}$, and $468cm^{-1}$, respectively. Thiophene and Benzothiophene mixed in n-heptane and benzene (4:1) for preparation of Model Fuels I and II, respectively. Each of silica based metal was applied as adsorbent in batch mode to assess the removal efficiency. Results demonstrated optimal desulphurization of more than 90% following efficacy order as Si-Ni > Si-Zn > Si-Cu based adsorbents. Proposed multilayered (Freundlich) adsorption mechanism follows ${\pi}$-complexation with pseudo secnd order kinetics.

Kinetics of the Formation of Nickel-Phthalocyanine (Nickel-Phthalocyanine 생성의 반응속도론적 연구)

  • Bae, Kook-Jin;Hahn, Chi-Sun
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.2
    • /
    • pp.84-92
    • /
    • 1972
  • A mechanism for the ring formation of nickel phthalocyanine (Ni-Pc) has been proposed based on chemical kinetics. The effect of the catalyst on the rate was examined, and ammonium molybdate has been found to be the most effective. The reaction order of the ring formation was determined to be of the 1st order over all, with only the concentration of urea affecting the rate of the ring formation. All the results including thermodynamic parameters support a conclusion that the rate-determining step seems to be the enolization of the urea-catalyst transition complex, followed by fast decomposition of the tautomeric enolized urea into ammonia and isocyanic acid. These intermediates then reacted with the phthalic anhydride to form imino and diimino-phthalimide, which condense to form nickel phthalocyanine in the presence of the nickel cation.

  • PDF

Synthesis of Conjugated Linoleic Acid Methylester using Heterogeneous Catalysts (불균일계 촉매에 의한 공액 리놀레산 메틸에스테르의 합성)

  • Yuk, Jeong-Suk;Lee, Sang-Jun;Kim, Nam-Kyun;Kim, Young-Wun;Yoon, Byeong-Tae
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.291-298
    • /
    • 2013
  • Conjugated linoleic acid methylester was synthesized through isomerization of linoleic acid methylester by using heterogeneous catalysts. As for heterogeneous catalysts, Ni supported zeolite type catalysts were used. H zoelite Y (HY) were ion exchanged with KCl aqueous solution to synthesize K zeolite Y (KY), and with impregnation method, Ni supported zeolite catalysts were synthesized. Catalysts were used after pre-treatment by using hydrogen. HY catalysts showed a high conversion at low temperatures; but a low selectivity for conjugation reaction. KY catalysts showed a low conversion at low temperatures; but a similar conversion with HY catalysts at high temperatures while a high selectivity at low temperatures. As a result, 4 wt% Ni/KY720 recorded the high conjugation yield of 63.4% at 220.

The Promotion Effects on Partial Oxidation of Methane for Hydrogen Production over Co/Al2O3 and Ni/Al2O3 Catalysts (수소생산을 위한 메탄 부분산화용 코발트와 니켈 촉매에서의 조촉매 첨가 효과)

  • Hong, Ju-Hwan;Ha, Ho-Jung;Han, Jong-Dae
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.95-101
    • /
    • 2012
  • The Co and Ni catalysts supported on $Al_2O_3$ for partial oxidation of methane producing hydrogen were synthesized using impregnation to incipient wetness. And the promotion effects of metals such as Mg, Ce, La and Sr in partial oxidation of methane over these $Co/Al_2O_3$ and $Ni/Al_2O_3$ were investigated. Reaction activity of these catalysts for the partial oxidation of methane was investigated in the temperature range of 450~$650^{\circ}C$ at 1 atm and $CH_2/O_2$ = 2.0. The catalysts were characterized by BET, XRD and SEM/EDX. The results indicated that the catalytic performance of these catalysts was improved with the addition of 0.2 wt% metal promoter. The Mg promoted $Co/Al_2O_3$ catalyst showed the highest $CH_4$ conversion and hydrogen selectivity at higher temperature than $500^{\circ}C$. The Ce and Sr promoted Ni catalysts superior to Co-based catalysts in the low temperature range. The addition of metal promoter to $Co/Al_2O_3$ and $Ni/Al_2O_3$ catalysts increased the surface area.

Production of $H_2$ Gas in Pyrolysis of Paper Biomass using Ni-based Catalysts (종이 바이오매스의 열분해에서 니켈 촉매에 의한 수소제조특성)

  • Choi, Yong-Keun;Chattopadhyay, Jeeta;Kim, Chul-Ho;Kim, Lae-Hyun;Son, Jae-Ek;Park, Dea-Won
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.6
    • /
    • pp.514-519
    • /
    • 2008
  • In the present study, biomass pyrolysis was done using five different kinds of catalysts with change in the support species and their compositions. Ni was loaded on alumina, ceria and alumina-ceria supports using co-precipitation method. In all the catalysts, 30wt% of nickel was loaded on the support materials. The paper used in daily writing purposes was taken into account as biomass sample. In the experiment, 19 of biomass was mixed with o.1g of each catalyst separately. Thermogravimetric analysis (TGA) was performed with all the catalysts diminished the initial degradation temperature of paper biomass sample considerably. During the pyrolysis process, the temperature was raised from room temperature to $800^{\circ}C$ with the heating rate of $10^{\circ}C$/min in the furnace. The cumulative $H_2$ volume had reached the best value of l4.02ml with the Ni/$Al_2O_3-CeO_2$ 30wt%/(50wt%-50wt%) catalysts. In presence of all the catalysts, the highest amount of $H_2$ was produced at $800^{\circ}C$, 10min. of residence time.

[ $CH_4$ ] steam reforming over Ni-Ru bimetallic catalysts (Ni-Ru 계열 촉매 상에서의 $CH_4$ 수증기 개질 반응)

  • Jeong Jin Hyeok;Lee Jung Won;Lee Duek Ki;Kim Dong Hyun;Seo Dong Joo;Seo Yutek;Yoon Wang Lei
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.256-259
    • /
    • 2005
  • 본 연구에서는 기존 니켈 활성성분만의 알루미나담지 촉매에 비해 고온에서의 수소를 사용한 환원 전처리 과정을 거치지 않고도 높은 반응활성을 나타내며, 반응 중 탄소침적에 대한 촉매 저항성에서도 우수한 결과를 나타낸 루테늄-니켈 촉매에 대해보고 하고자 한다. 메탄 수증기 개질 반응을 통해, 루테늄을 최종적으로 담지한 알루미나 담지니켈계 촉매는 별도의 전처리과정 없이 $650^{\circ}C$에서부터 높은 반응성을 보였으며, 루테늄과 니켈을 동시에 담지한 경우보다 더 우수한 활성을 나타내었다. Ru의 담지량을 달리한 실험에서는$RU(0.5)/Ni(20)/Al_2O_3$ 촉매가 가장 높은 활성을 보였다. $H_2-TPR$ 분석 결과, $Ru(0.5)/Ni(20)/A1_2O_3$촉매의 경우 세 가지 환원 피크가 나타났으며, $Ni(20)/A1_2O_3$촉매와 비교해 볼 때, 저온(<$130^{\circ}C)$에서 환원가능한 $RUO_2$의 존재를 확인할 수 있었다. 담지된 RU은 분산도가 높아, XRD분석 결과에서 Ru이나 $RuO_2$의 특성 피크가 존재하지 않았다. 또한 $650^{\circ}C$에서 10시간 개질반응 후 얻어진 촉매에 대해 $O_2-TGA$를 분석한 결과, $Ni(20)/Al_2O_3$촉매는 $-7.2wt\%$ 정도의 큰 무게 감소를 보였으며, 이는 촉매 표면에 생성된 carbon tube에 의한 것임을 SEM 분석을 통해 알 수 있었다 이에 반해, $Ru(0.5)/Ni(20)/Al_2O_$ 촉매는 $O_2-TGA$$0.3wt\%$ 정도 무게 증가에 그쳤으며, SEM 분석상 carbon tube의 생성이 크게 억제되었음을 알 수 있었다.

  • PDF

Development of High Performance WGS Catalyst for Fuel Processor Applications (연료 개질기용 고성능 수성가스 전환반응 촉매 개발)

  • Lee, Yoon-Ju;Ryu, Jong-Woo;Kim, Dae-Hyun;Choi, Eun-Hyung;Noh, Won-Suck;Lee, Sang-Deuk;Moon, Dong-Ju
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.451-454
    • /
    • 2006
  • WGS reaction over Mo2C and ceria based catalysts was investigated to develop an alternative commercial Cu-Zn/Al2O3 catalyst for fuel processor and hydrogen station. The Mo2C catalysts were prepared by a temperature programmed method and the various metal supported cerium oxide catalysts were prepared by an Impregnation method. The catalysts were characterized by the N2 physisorption, Co chemisorption, XRD, TEM and TPR. It was found that Mo2C and 0.2wt% Pt-40wt%, Ni/CeO2 catalysts had higher activity and stability than the Cu-Zn/Al203 above $260^{\circ}C$. Moreover, CO conversion of more than 85% was observed at $280{\sim}300^{\circ}C$. But all catalysts were deactivated during the thermal cycling runs. The results suggest that these catalysts are an attractive candidate for the alternative Cu-Zn/Al2O3 catalyst for fuel processor and hydrogen station applications.

  • PDF

Hydrocarbon Synthesis of Waste Lignocellulosics by Liquefaction Reaction of Thermochemical Deoxyhdrogenolysis Method (II) (목질폐재(木質廢材)의 열(熱)-화학적(化學的) 탈(脫)산소-수소첨가반응(환원반응)에 의한 액화(液化)탄화수소의 합성 (II))

  • Lee, Byung-Guen
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.80-84
    • /
    • 1991
  • Lignocellulosic biomass including acetosolv ricestraw and spruce lignin were liquefied and converted into liquid hydrocarbons by catalytic hydroliquefaction reaction. These experimental works were carried out in 1-liter-capacity autoclave using 50% tetralin and m-cresol solution respectively as soluble solvent and Ni. Pd. Fe and red mud as catalyst. $H_2$ gas was supplied into the reactor for escaltion of deoxhydroenolysis reaction. Catalyst concentrations were 1 % of raw material based on weight. The ratio between raw materials and soluble solvent are 1g and 10cc. The reaction conditions are 400-$700^{\circ}C$ of reaction temperature, 10-50 atms of reaction pressure. The highest yield of hydrocarbon, so called "product oil" showed 32% and 5.5% of lowest char formation when red mud was used as catalyst. The product oil yields from those of other catalysts were in the range of 20-29%. The influence of different initial hydrogen pressures was examined in the range d 30-50 atms. A minimum pressure of 35 atms was necessary to obtain a complete recovery of souble solvent for recycling.

  • PDF

Hydrotreating for Stabilization of Bio-oil Mixture over Ni-based Bimetallic Catalysts (Ni계 이원금속 촉매에 의한 혼합 바이오오일의 안정화를 위한 수소첨가 반응)

  • Lee, Seong Chan;Zuo, Hao;Woo, Hee Chul
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.69-78
    • /
    • 2021
  • Vegetable oils, such as palm oil and cashew nut shell liquid (CNSL), are used as major raw materials for bio-diesel in transportation and bio-heavy oil in power generation in South Korea. However, due to the high unsaturation degree caused by hydrocarbon double bonds and a high content of oxygen originating from the presence of carboxylic acid, the range of applications as fuel oil is limited. In this study, hydrotreating to saturate unsaturated hydrocarbons and remove oxygen in mixed bio-oil containing 1/1 v/v% palm oil and CNSL on monometallic catalysts (Ni and Cu) and bimetallic catalysts (Ni-Zn, Ni-Fe, Ni-Cu Ni-Co, Ni-Pd, and Ni-Pt) was perform under mild conditions (T = 250 ~ 400 ℃, P = 5 ~ 80 bar and LHSV = 1 h-1). The addition of noble metals and transition metals to Ni showed synergistic effects to improve both hydrogenation (HYD) and hydrodeoxygenation (HDO) activities. The most promising catalyst was Ni-Cu/��-Al2O3, and in the wide range of the Ni/Cu atomic ratio of 9/1~1/4, the conversion for HYD and HDO reactions of the catalysts were 90-93% and 95-99%, respectively. The tendency to exhibit almost constant reaction activity in these catalysts of different Ni/Cu atomic ratios implies a typical structure-insensitive reaction. The refined bio-oil produced by hydrotreating (HDY and HDO) had significantly lower iodine value, acid value, and kinetic viscosity than the raw bio-oil and the higher heating value (HHV) was increased by about 10%.