• Title/Summary/Keyword: Ni-YSZ

Search Result 196, Processing Time 0.021 seconds

Study on Possibility of PrBaMn2O5+δ as Fuel Electrode Material of Solid Oxide Electrolysis Cell (이중 페로브스카이트 촉매 PrBaMn2O5+δ의 고온전기분해조(Solid Oxide Electrolysis Cell) 연료극 촉매로 적용 가능성에 대한 연구)

  • Kwon, Youngjin;Kim, Dongyeon;Bae, Joongmyeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.491-496
    • /
    • 2017
  • The hydrogen($H_2$) is promising energy carrier of renewable energy in the microgrid system such as small village and military base due to its high energy density, pure emission and convenient transportation. $H_2$ can be generated by photocatalytic water splitting, gasification of biomass and water electrolysis driven by solar cell or wind turbine. Solid oxide electrolysis cells(SOECs) are the most efficient way to mass production due to high operating temperature improving the electrode kinetics and reducing the electrolyte resistance. The SOECs are consist of nickel-yttria stabilized zirconia(NiO-YSZ) fuel electrode / YSZ electrolyte / lanthanum strontium manganite-YSZ(LSM-YSZ) air electrode due to similarity to Solid Oxide Fuel Cells(SOFCs). The Ni-YSZ most widely used fuel electrode shows several problems at SOEC mode such as degradation of the fuel electrode because of Ni particle's redox reaction and agglomeration. Therefore Ni-YSZ need to be replaced to an alternative fuel electrode material. In this study, We studied on the Double perovskite $PrBrMnO_{5+{\delta}}$(PBMO) due to its high electric conductivity, catalytic activity and electrochemical stability. PBMO was impregnated into the scaffold electrolyte $La_{0.8}Sr_{0.2}Ga_{0.85}Mg_{0.15}O_{3-{\delta}}$(LSGM) to be synthesized at low temperature for avoiding secondary phase generated when it exposed to high temperature. The Half cell test was conducted at SOECs and SOFCs modes.

Study on Depositing Oxide Films on Ni Substrate for Superconducting Tape (초전도 테이프 제작을 위한 니켈기판 상의 산화물 박막 증찰)

  • Kim, Ho-Sup;Shi, Dongqui;Ko, Rock-Kil;Chung, Jun-Ki;Ha, Hong-Soo;Song, Kyu-Jeong;Park, Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1356-1361
    • /
    • 2004
  • High temperature superconducting coated conductor has a structure of ///. The buffer layer consists of multi-layer, this study reports the deposition method and optimal deposition conditions of YSZ(Yttria-stabilized zirconia) layer which plays a important part in preventing the elements of substrate from diffusing into the superconducting layer. YSZ layer was deposited by DC reactive sputtering technique using water vapor for oxidizing deposited elements on substrate. To investigate optimal thickness of YSZ film, four YSZ/CeO$_2$/Ni samples with different YSZ thickness(130 nm, 260 nm, 390 nm, and 650 nm) were prepared. The SEM image showed that the surface of YSZ layer was getting to be rougher as YSZ layer was getting thicker and the growth mode of YSZ layer was columnar grain growth. After CeO$_2$ layer was deposited with the same thickness of 18.3 nm on each four samples, YBCO layer was deposited by PLD method with the thickness of 300 nm. The critical currents of four samples were 0, 6 A, 7.5 A, and 5 A respectively. This shows that as YSZ layer is getting thicker, YSZ layer plays a good role as a diffusion barrier but the surface of YSZ layer is getting rougher.

Fabrication of Micro Solid Oxide Fuel Cell by Thin Film Processing Hybridization: I. Multilayer Structure of Sputtered YSZ Thin Film Electrolyte and Ni-Based Anodes deposited by Spray Pyrolysis (박막공정의 융합화를 통한 초소형 고체산화물 연료전지의 제작: I. Spray Pyrolysis법으로 증착된 Ni 기반 음극과 스퍼터링으로 증착된 YSZ 전해질의 다층구조)

  • Son, Ji-Won;Kim, Hyoung-Chul;Kim, Hae-Ryoung;Lee, Jong-Ho;Lee, Hae-Weon;Bieberle-Hutter, A.;Rupp, J.L.M.;Muecke, U.P.;Beckel, D.;Gauckler, L.J.
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.10
    • /
    • pp.589-595
    • /
    • 2007
  • Physical properties of sputtered YSZ thin film electrolytes on anode thin film by spray pyrolisis has been investigated to realize the porous electrode and dense electrolyte multilayer structure for micro solid oxide fuel cells. It is shown that for better crystallinity and density, YSZ need to be deposited at an elevated temperature. However, if pure NiO anode was used for high temperature deposition, massive defects such as spalling and delamination were induced due to high thermal expansion mismatch. By changing anode to NiOCGO composite, defects were significantly reduced even at high deposition temperature. Further research on realization of full cells by processing hybridization and cell performance characterization will be performed in near future.

Characterization of Ni/YSZ Anode Coating for Solid Oxide Fuel Cells by Atmospheric Plasma Spray Method (고체산화물 연료전지를 위한 플라즈마 용사코팅 Ni/YSZ 음극 복합체의 특성평가)

  • Park, Soo-Dong;Yoon, Sang-Hoon;Kang, Ki-Cheol;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.50-54
    • /
    • 2008
  • In this research, anode for SOFC has been manufactured from two different kinds of feedstock materials through thermal spraying process and the properties of the coatings were characterized and compared. One kind of feedstock was manufactured from spray drying method which includes nano-components of NiO, YSZ (300 nm) and graphite. And the other is manufactured by blending the micron size NiO coated graphite, YSZ and graphite powders as feedstock materials. Microstructure, mechanical properties and electrical conductivity of the coatings as-sprayed, after oxidation and after hydrogen reduction containing nano composite which is prepared from spray-dried powders were evaluated and compared with the same properties of the coatings prepared from blended powder feedstock. The coatings prepared from the spray dried powders has better properties as they provide larger triple phase boundaries for hydrogen oxidation reaction and is expected to have lower polarization loss for SOFC anode applications than that of the coatings prepared from blended feedstock. A maximum electrical conductivity of 651 S/cm at $800^{\circ}C$ was achieved for the coatings from spray dried powders which much more than that of the average value.

Microstructure and Electrical Properties of Single Cells Based on a Ni-YSZ Cermet Anode for IT-SOFCs (중.저온헝 SOFC를 위한 Ni-YSZ 연료극 지지체형 단전지 미세구조와 전기적 특성)

  • Park, Jae-Keun;Yang, Su-Yong;Lee, Tae-Hee;Oh, Je-Myung;Yoo, Young-Sung;Park, Jin-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.823-828
    • /
    • 2006
  • One of the main issues of Solid Oxide Fuel Cells (SOFCs) is to reduce the operating temperature to $750^{\circ}C$ or less. It has advantages of improving the life of component parts and the long-term stability of a system, so the production cost could be decreased. In order to achieve that, the ohmic and polarization loss of a single cell should be minimized first. This paper presents.to fabricate anode-supported single cells with controlling microstructure as a function of particle size and volume of graphite and NiO-YSZ weight ratio. By means of optimizing the manufactural condition through microstructure analysis and performance evaluation, the single cell which had NiO-YSZ=6:4, graphite volume of 24% and graphite size of $75{\mu}m$ as the anode composition showed a distinguished power density of $510mW/cm^2$ at $650^{\circ}C$ and $810mW/cm^2$ at $700^{\circ}C$, respectively.

Electrical Properties of YSZ Electrolyte Film Prepared by Electron Beam PVD (EB-PVD법에 의해 제조된 YSZ 전해질의 전기적 특성)

  • Shin, Tae-Ho;Yu, Ji-Haeng;Lee, Shiwoo;Han, In-Sub;Woo, Sang-Kuk;Hyun, Sang-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.2 s.273
    • /
    • pp.117-122
    • /
    • 2005
  • Electron Beam Physical Vapor Deposition (EB-PVD) is a typical technology for thermal barrier coating with Yttria Stabilized Zirconia (YSZ) on aero gas turbine engine. In this study EB-PVD method was used to fabricate dense YSZ film on NiO-YSZ as a electrolyte of Solid Oxide Fuel Cell (SOFC). Dense YSZ films of -10 $\mu$m thickness showed nano surface structure depending on deposition temperature. Electrical conductivities of YSZ film and electric power density of the single cell were evaluated after screen- printing $LaSrCoO_3$ as a cathode.

Oxygen detection of sensor cells based on YSZ (Yttria-Stabilized Zirconia) thin films (YSZ(yttria-stabilized zirconia) 박막을 이용한 센서 셀의 산소 감응)

  • 박준용;배정운;황순원;김기동;조영아;전진석;최동수;염근영
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4B
    • /
    • pp.507-513
    • /
    • 1999
  • 8mol%-yttria-stabilized zirconia(YSZ) thin films as oxygen ion conductor were deposited by rf-magnetron sputtering, and the oxygen gas sensors with the structure of $SiO_2$ substrate/Ni-NiO mixed reference layer/Pt/YSZ/Pt were fabricated and their oxygen sensing properties were investigated. The steady-state electro-motive force (EMF) values were measured as a function of oxygen partial pressure ($PO_2;form 1.013\times10^3 \textrm{Pa \;to}\; 1.013\times10^5$Pa) and operating temperature ($300^{\circ}C$ to $700^{\circ}C$). The fabricated YSZ oxygen sensor showed the best oxygen sensing properties at 50$0^{\circ}C$. However, oxygen sensing properties were very low at the temperature lower than 30$0^{\circ}C$ due to the lack of oxygen ion mobility and at the temperature higher than $700^{\circ}C$ due 새 intermixing of materials between the layers. Especially, the YSZ sensor operating at $500^{\circ}C$ and oxygen partial pressure above $1.565\times10^4$Pa showed the oxygen sensing properties close to the values predicted by ideal Nernst equation.

  • PDF

Characterization of Redox Cycles of NI-YSZ Porous Anode Support for Tubular SOFCs (원통형 고체산화물연료전지용 다공성 NI-YSZ 연료극의 Redox 사이클 특성)

  • Heo, Yeon-Hyuk;Park, Kwang-Yeon;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.6
    • /
    • pp.526-532
    • /
    • 2010
  • The anode may inevitably undergo a number of reduction.oxidation (redox) cycles during solid oxide fuel cells (SOFCs) operation. The re-oxidation of Ni to NiO causes significant mechanical stress to be developed across the anode, which may destroy the integrity of the whole cell. In this study, the redox behavior of Ni-YSZ composite was examined at $800^{\circ}C$ using various characterization techniques.

Effect of the Buffered-template on the Property of YBCO Superconducting Film Deposited by MOCVD Method (MOCVD 법에 의해 제조된 YBCO 초전도 박막의 물성에 대한 완충층 템플릿의 영향)

  • Jun, Byung-Hyuk;Choi, Jun-Kyu;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.8 no.1
    • /
    • pp.27-32
    • /
    • 2006
  • [$YBa_2Cu_3O_{7-x}$] thin films were deposited on various buffered-templates by a metal organic chemical vapor deposition(MOCVD). Three different templates of $CeO_2/YSZ/CeO_2/pure-Ni(CYC),\;CeO_2/YSZ/Y_2O_3/Ni-3at.%W(YYC)$ and $CeO_2/IBAD-YSZ$/stainless steel were used. The Ni and Ni-W alloy tapes were biaxially textured by cold rolling and annealing heat treatment. The dense YBCO films were grown on both the IBAD and YYC templates with no microcrack, while the YBCO films on the CYC templates were grown with the formation of microcracks and NiO. The YBCO film on the YYC template showed the higher $I_c$ than that on CYC template. Especially, the IBAD templates with a thin $CeO_2$(type I) and thick $CeO_2$(type II) top layer were used to compare the deposition nature of the YBCO on them. Comparing the current property of the YBCO films on IBAD templates, the YBCO film deposited on thick $CeO_2$ layer was better than the film on thin $CeO_2$ layer.

  • PDF

Application of a General Gas Electrode Model to Ni-YSZ Symmetric Cells: Humidity and Current Collector Effects

  • Shin, Eui-Chol;Ahn, Pyung-An;Seo, Hyun-Ho;Lee, Jong-Sook
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.511-520
    • /
    • 2016
  • Electrolyte-supported symmetric Ni-YSZ cermet electrodes of ca. $23{\mu}m$ were prepared by screenprinting and the impedance was measured as a function of humidity from 2% to 90% balanced in $H_2$ at a total flow rate of 50 sccm. The Ni felt current collector of 1 mm thickness exhibited a Gerischer-like gas concentration impedance in the low frequency range, which was similarly observed in the cermet-supported solid oxide cells, while the Pt paste collector exhibited only electrochemical polarization. The electrochemical polarization of both samples was modeled by a non-ideal diffusion-reaction transmission line model including CPEs with ${\alpha}$= 0.5. In the case of the Pt paste collector, all the Bisquert parameters exhibited humidity dependence to the -1/2 power, supporting a non-faradaic chemical reaction mechanism at three phase boundaries. Consequently, the surface diffusivity and reaction rate increased linearly with humidity. Less pronounced humidity dependence and somewhat lower utilization length with an Ni felt collector can be attributed to the diffusion-limited gas flow through the collector.