• Title/Summary/Keyword: Ni-YSZ

Search Result 196, Processing Time 0.022 seconds

Synthesis of Ultrafine NiO/YSZ Composite Powder for Anode Material of Solid Oxide Fuel Cells (고체산화물 연료전지의 양극재료용 초미분체 NiO/YSZ 복합체 재료합성 연구)

  • 최창주;김태성;황종선;김선재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.422-425
    • /
    • 1999
  • Ultrafine NiO/YSZ (Yttria-Stabilized Zirconic) composite powders were prepared by using a glycine nitrate process (GNP) for anode material of solid oxide fuel cells. The specific surface areas of synthesized NiO/YSZ composite powders were examined with controlling pH of a precursor solution and the content of glycine. The binding of glycine with metal ions occurring in the precursor solution was analyzed by using FTIR. The characteristics of synthesized composite powders were examined with X-ray diffractometer, a BET method with $N_2$ absorption, scanning and transmission electron microscopies. Strongly acid precursor solution increased the specific surface area of the synthesized composite powders. This is suggested to be caused by the increased binding of metal ions and glycine under a strong acid solution of pH=0.5 that lets glycine consist of mainly the amine group of NH$_3$$^{+}$ After sintering and reducing treatment of NiO/YSZ composite powders synthesized by GNP, the Ni/YSZ pellet showed ideal microstructure very fine Ni Particles of 3-5${\mu}{\textrm}{m}$ were distributed uniformly and fine pores around Ni metal particles were formed, thus, leading to an increase of the triple phase boundary among gas, Ni and YSZ.Z.

  • PDF

Performance of SOFC According to Thickness of Shell with Ni-YSZ Core-shell (Ni-YSZ Core-shell에서 Shell의 두께에 따른 SOFC의 출력특성)

  • CHOI, BYUNG-HYUN;HONG, SUN-KI;JI, MI-JUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.663-668
    • /
    • 2017
  • SOFC anode fabricated core-shell using machano-fusion method using core with submicron size Ni, nano size YSZ for shell. Using prepared core-shell, depending on the thickness of the shell, we studied how the characteristics of sintering and SOFC cell change by sintering the anode. The Ni-YSZ core-shell has a Ni core of 0.5 to $1.2{\mu}m$ over 2 to 7 YSZ of 15 to 20 nm is, and as the high speed mixing time increases, the YSZ number increases and the shell thickness becomes uniform increased. When the fuel electrode is manufactured with core-shell, it has superior sintering property, has grain of uniform size compared with the one synthesized by general mixing, the falling path is short, the conductors (electrons and ions) connection is excellent, the electrical conductivity has become excellent. The thicker the shell, the lower the electrical conductivity. When the thickness of shell ranged from 46 to 139 nm and 61 to 81 nm, the performance was the highest and the ASR was the smallest.

Y2O3-stabilized ZrO2, Ni, and graphene-added Mg by reactive mechanical grinding processing for hydrogen storage and comparison with Ni and Fe2O3 or MnO-added Mg

  • Song, Myoung Youp;Choi, Eunho;Kwak, Young Jun
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.6
    • /
    • pp.609-616
    • /
    • 2019
  • The optimum powder to ball ratio was examined, which is one of the important conditions in reactive mechanical grinding processing. Yttria (Y2O3)-stabilized zirconia (ZrO2) (YSZ), Ni, and graphene were chosen as additives to enhance the hydriding and dehydriding rates of Mg. Samples with a composition of 92.5 wt% Mg + 2.5 wt% YSZ + 2.5 wt% Ni + 2.5 wt% graphene (designated as Mg-2.5YSZ-2.5Ni-2.5graphene) were prepared by grinding in hydrogen atmosphere. Mg-2.5YSZ-2.5Ni-2.5graphene had a high effective hydrogen-storage capacity of almost 7 wt% (6.85 wt%) at 623 K in 12 bar H2 at the second cycle (n = 2). Mg-2.5YSZ-2.5Ni-2.5graphene contained Mg2Ni phase after hydriding-dehydriding cycling. Mg-2.5YSZ-2.5Ni-2.5graphene had a larger quantity of hydrogen absorbed for 60 min, Ha (60 min), than Mg-2.5Ni-2.5graphene and Mg-2.5graphene. The addition of YSZ also increased the initial dehydriding rate and the quantity of hydrogen released for 60 min, Hd (60 min), compared with those of Mg-2.5Ni-2.5graphene. Y2O3-stabilized ZrO2, Ni, and graphene-added Mg had a higher initial hydriding rate and a larger Ha (60 min) than Fe2O3, MnO, or Ni and Fe2O3-added Mg at n = 1.

Comparison of Microstructure and Electrical Conductivity of Ni/YSZ and Cu/YSZ Cathode for High Temperature Electrolysis (고온수전해용 Ni/YSZ와 Cu/YSZ 환원극의 미세구조 및 전기전도도 비교)

  • Kim, Jong-Min;Shin, Seock-Jae;Woo, Sang-Kook;Kang, Kae-Myung;Hong, Hyun-Seon
    • Korean Journal of Materials Research
    • /
    • v.18 no.7
    • /
    • pp.384-388
    • /
    • 2008
  • Hydrogen production via high high-temperature steam electrolysis consumes less electrical energy than compared to conventional low low-temperature water electrolysis, mainly due to the improved thermodynamics and kinetics at elevated temperaturetemperatures. The elementalElemental powders of Cu, Ni, and YSZ are were used to synthesize high high-temperature electrolysis cathodecathodes, of Ni/YSZ and Cu/YSZ composites, by mechanical alloying. The metallic particles of the composites were uniformly covered with finer YSZ particles. Sub-micron sized pores are were homogeneously dispersed in the Ni/YSZ and Cu/YSZ composites. In this study, The cathode materials were synthesized and their Characterizations properties were evaluated in this study: It was found that the better electric conductivity of the Cu/YSZ composite was measured improved compared tothan that of the Ni/YSZ composite. Slight A slight increase in the resistance can be produced for in a Cu/YSZ cathode by oxidation, but it this is compensated offset for by a favorable thermal expansion coefficient. Therefore, Cu/YSZ cermet can be adequately used as a suitable cathode material of in high high-temperature electrolysis.

Characterization of Spherical NiO-YSZ Anode Composites for Solid Oxide Fuel Cells Synthesized by Ultrasonic Spray Pyrolysis

  • Lim, Chae-Hyun;Lee, Ki-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.243-247
    • /
    • 2014
  • Spherical NiO-YSZ particles were synthesized by ultrasonic spray pyrolysis (USP). The morphology of the synthesized particles can be modified by controlling parameters such as precursor pH, carrier-gas flow-rate, and temperature of the heating zone. The synthesized spherical NiO-YSZ particles have rough surface morphology at high carrier-gas flow-rates due to rapid gas exhaustion and insufficient particle ordering. The Ni-YSZ cermet anode synthesized by ultrasonic spray pyrolysis at a flow rate of l L/min, with precursor solution at pH4, showed a higher maximum power density of 256 $mW/cm^2$ compared to a conventionally mixed Ni-YSZ anode (185 $mW/cm^2$) at $800^{\circ}C$. While the area-specific resistance of conventionally mixed Ni-YSZ anodes increases gradually with operation time (indicating performance degradation), the Ni-YSZ anode synthesized by USP does not exhibit any performance degradation, even after 500 h.

Characteristics of Ni/YSZ Cermet Prepared by Mechanical Alloying Method for the High Temperature Electrolysis of Steam

  • Choo, Soo-Tae;Kang, Kyoung-Hoon;Chae, Ui-Seok;Hong, Hyun-Seon;Hwang, Kab-Jin;Bae, Ki-Kwang;Shin, Seock-Jae
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.764-767
    • /
    • 2006
  • Ni/YSZ $(Y_2O_3-stabilized\;ZrO_2)$ composite as an electrode component for High Temperature Electrolysis (HTE) was fabricated by mechanical alloying method using Ni and YSZ powders. Characterization of the synthesized composite was investigated with various analysis tools, including XRD, SEM and PSA, and a self-supporting planar unit cell prepared with the Ni/YSZ composite was prepared to study the electrochemical reactions for the production of hydrogen. The Ni/YSZ cermet is composed of crystalline Ni and YSZ, in a sub-micro scale, and has an even distribution without aggregated particles. In addition, under an electrochemical reaction, the unit cell showed an $H_2$ evolution rate from steam of 14 Nml/min and $600mA/cm^2$ of current density at the electrode.

Preparation of NiO Coated YSZ Powder for Fabrication of an SOFC Anode (SOFC 음극 제조를 위한 NiO가 코팅된 YSZ 분말의 합성)

  • Lim, Kwang-Young;Han, In-Dong;Sim, Soo-Man;Park, Jun-Young;Lee, Hae-Won;Kim, Joo-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.781-787
    • /
    • 2006
  • NiO-coated YSZ powder was prepared using heterogeneous precipitation of Ni hydroxides on YSZ particle surface and high energy milling. The powders were characterized by TG/DTA, XRD, XPS, and SEM. Amorphous Ni precipitate completely decomposed into NiO at $500^{\circ}C$ and the growth of NiO crystallites was constrained by the core particles. Nanocrystalline NiO-coated YSZ core-shell structure powder could be obtained after calcination at $800^{\circ}C$ for 2 h. A core-shell powder compact, due to high sinterability, showed a near theoretical density at $1350^{\circ}C$. After reduction at $900^{\circ}C$, interpenetrating Ni-YSZ microstructure with very uniformly distributed fine Ni and YSZ grains and pores was observed. In contrast, the mechanically mixed oxide sample showed less uniform distribution of pores and larger discontinuous We particles as compared with the core-shell samples.

The Effect of Using Nano NiO Powder Made by Pulsed Wire Evaporation (PWE) Method on SOFC Anode Functional Layer (Pulsed Wire Evaporation(PWE) Method으로 제조된 나노 NiO 분말의 SOFC 연료극 기능성층으로의 적용)

  • Kim, Hae-Won;Kim, Dong-Ju;Park, Seok-Joo;Lim, Tak-Hyoung;Lee, Seung-Bok;Shin, Dong-Ryul;Yoon, Soon-Gil;Song, Rak-Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.485-491
    • /
    • 2009
  • In present work, NiO/YSZ anode functional layer was prepared by nano NiO powder and 8YSZ powder. The nano NiO powders were made by Pulsed wire evaporation (PWE) method. Nano NiO- YSZ functional layer was sintered at the temperature of $900-1400^{\circ}C$. The prepared functional layer was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy. The nano NiO- YSZ anode functional layer sintered at $1300^{\circ}C$ shows the lowest polarization resistance. Nano NiO- YSZ anode functional layer shows about two times smaller polarization resistance than the anode functional layer made by commercial NiO-YSZ powders. Based on these experimental results, it is concluded that the nano NiO-YSZ cermet is suitable as a anode functional layer operated at $800^{\circ}C$.

Microstructure Control of Porous Ceramics by Freeze-Drying of Aqueous Slurry (동결건조공정을 이용한 다공성 세라믹스의 미세구조 제어)

  • 황해진;문지웅
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.229-234
    • /
    • 2004
  • In this study, we proposed new forming process for a porous ceramic body with unique pore structure. h tubular-type porous NiO-YSZ body with radially aligned pore channels was prepared by freeze-drying of aqueous slurry. A NiO-YSZ slurry was poured into the mold, which was designed to control the crystallization direction of the ice, followed by freezing. Thereafter the ice was sublimated at a reduced pressure. SEM observations revealed that the NiO-YSZ porous body showed aligned large pore channels parallel to the ice growth direction, and fine pores are formed around the outer surface of the tube. It was considered that the difference in the ice growth rate during the freezing process resulted in such a characteristic microstructure. Bilayer consisting of dense thin electrolyte film of YSZ onto the tubular type porous body has been successfully fabricated using a slurry-coating process followed by co-firing. It was regarded that the obtained bilayer structure is suitable for constructing electrode-support type electrochemical devices such as solid oxide fuel cells.