• Title/Summary/Keyword: Ni-P alloy

Search Result 226, Processing Time 0.024 seconds

The Effects of Heat Treatment Temperature on Mechanical Property of 93W-6.3Ni-0.7Fe Heavy Alloy (93W-6.3Ni-0.7Fe 중합금에서 열처리온도에 따른 기계적 성질변화)

  • 김은표
    • Journal of Powder Materials
    • /
    • v.5 no.1
    • /
    • pp.42-49
    • /
    • 1998
  • A study on the improvement of the impact energy in 93W heavy alloy with a Ni/Fe ratio of 9/1 has been carried out as a function of heat treatment temperature. The obtained results were compared to that of the traditional alloy system in which the Ni/Fe ratio is 7/3 or 8/2. With increasing heat treatment temperature from 1150 to 125$0^{\circ}C$, the impact energy of the alloy with the Ni/Fe ratio of 9/1 is remarkably increased from 42 to 72 J, which is higher than that of traditional alloy, up to 118$0^{\circ}C$ and then saturated. Fracture mode was also changed from brittle W/W boundary failure to W cleavage. The temperature showing the dramatic shrinkage by dilatometric anaysis of the heavy alloy with Ni/Fe ratio of 9/1 was found to be 1483 $^{\circ}C$, which is higher than that (146$0^{\circ}C$) of the heavy alloy with Ni/Fe ratio of 7/3. Auger Electron Spectroscopy showed that the segregation of impurities, such as S, P, and C in W/W grain boundary was considerably decreased with increasing heat treatment temperature from 1150 to l18$0^{\circ}C$. From the above results, it was found that the impurity segregation in W/W grain boundary played an important role on the decrease of impact properties, and the heat treatment temperature should be appropriately chosen, as considering the Ni/Fe ratio of the alloy, in order to get good impact properties.

  • PDF

Comparison Study of Wear Resistance Among Several Denture Teeth Opposing Various Restorative Materials (대합되는 재료에 따른 합성수지 인공치의 마모저항성에 관한 비교 연구)

  • Park, Young-Bae
    • Journal of Technologic Dentistry
    • /
    • v.31 no.1
    • /
    • pp.63-74
    • /
    • 2009
  • Partial or complete prosthesis is needed when teeth are lost due to various kinds of reason. Artificial teeth recover occlusion instead of natural teeth. Artificial teeth are required of esthetics, fragile resistance and abrasive resistance. Artificial tooth is made of acrylic resin or porcelain. Nowadays, acrylic resin artificial teeth are mainly used. Acrylic resin teeth are occluded with natural teeth, gold alloy, Ni-Cr alloy or porcelain etc. Acrylic resin teeth have similar translucency, gloss of natural teeth. And it has good chemical bond with denture base material, but it has low wear resistance. The aim of this study is to compare wear resistance among several denture teeth(Endura, SR-orthosit-PE, Planustar) and between artificial resin denture teeth and opposing 3 restorative materials(gold, Ni-Cr alloy, porcelain). Wear tests were conducted with a rotating wear testing apparatus(pin-on-disk type wear tester) under conditions of rpm 180, 75 minutes and constant loading of 50N. The upper part was the cusp of maxillary first molar and the lower part was a disk type restorative materials. To make similar oral environment, water was supplied continually. The acrylic resin teeth wear was determined by weighing the cusp each 5 minutes during 75 minutes test. Vicker's hardness tester was used to evaluate the surface hardness of test specimens. The SEM was used to evaluate the wear surfaces. The results were as follows: 1. Wear rates of acrylic resin teeth opposing to the restorative materials were high in order of Porcelain, Gold, Ni-Cr alloy (p<.05). 2. Wear resistance rate opposing to the Porcelain disk, was shown in order of Endura, SR-orthosit-PE, Planustar. The wear rate of opposing to porcelain disk was above two times more than that of other groups (p<.05). 3. Wear resistance rates opposing to the Gold, Ni-Cr alloy disk, was shown in order of Endura, SR-orthosit-PE, Planustar (p<.05). 4. A degree of the surface hardness is directly proportional to the degree of wear resistance. There are statistically significant differences between each groups (p<.05).

  • PDF

The effect of substitution elements(Co, Cr, Fe) on the properties of Zr-based hydrogen storage alloy electrode for Ni-MH secondary battery (Ni-MH 2차 전지용 Zr계 수소저장합금전극의 특성에 미치는 치환원소(Co, Cr, Fe)의 영향)

  • Choi, Seung-Jun;Jung, So-Yi;Seo, Chan-Yeol;Choi, Jeon;Park, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.3
    • /
    • pp.185-189
    • /
    • 1999
  • Effects of alloy modification with the $Zr_{0.6}Ti_{0.4}V_{0.4}Ni_{1.2}Mn_{0.4}$ alloy for an electrode use have been investigated. For the alloy composition, a part of Mn was substituted by Co, Cr and Fe. The experimental results showed that Co accelerated activation of alloy, and Fe and Cr improved the discharge capacity. These results agree with P-C-T curves of each alloy. But substituting Fe for Mn showed the decrease of the discharge capacity when discharged at high rate (60mA, about 1C rate). Considering both the discharge capacity and the high rate discharge property, $Zr_{0.6}Ti_{0.4}V_{0.4}Ni_{1.2}Mn_{0.3}Cr_{0.1}$ alloy was found to be the best alloy among the alloys subjected to the test.

  • PDF

Effects of Film Formation Conditions on the Chemical Composition and the Semiconducting Properties of the Passive Film on Alloy 690

  • Jang, HeeJin;Kwon, HyukSang
    • Corrosion Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.141-148
    • /
    • 2006
  • The chemical composition and the semiconducting properties of the passive films formed on Alloy 690 in various film formation conditions were investigated by XPS, photocurrent measurement, and Mott-Schottky analysis. The XPS and photocurrent spectra showed that the passive films formed on Alloy 690 in pH 8.5 buffer solution at ambient temperature, in air at $400^{\circ}C$, and in PWR condition comprise $Cr_2O_3$, $Cr(OH)_3$, ${\gamma}-Fe_2O_3$, NiO, and $Ni(OH)_2$. The thermally grown oxide in air and the passive film formed at high potential (0.3 $V_{SCE}$) in pH 8.5 buffer solution were highly Cr-enriched, whereas the films formed in PWR condition and that formed at low potential (-0.3 $V_{SCE}$) in pH 8.5 buffer solution showed relatively high Ni content and low Cr content. The Mott-Schottky plots exhibited n-type semiconductivity, inferring that the semiconducting properties of the passive films formed on Alloy 690 in various film formation conditions are dominated by Cr-substituted ${\gamma}-Fe_2O_3$. The donor density, i.e., concentration of oxygen vacancy, was measured to be $1.2{\times}10^{21}{\sim}4.6{\times}10^{21}cm^{-3}$ and lowered with increase in the Cr content in the passive film.

Studies on Corrosion inhibition of 90Cu10NiFe Alloy by Eco-Friendly Organic Compound ; Sodium Diethyl Dithio Carbamate(NaDDC) (친환경 유기화합물(NaDDC)에 의한 90Cu10NiFe합금의 부식억제 연구)

  • Jung, Gil-Bong;Kim, Doo-Han;Lee, Sung-Do
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1018-1025
    • /
    • 2011
  • The improved properties of corrosion for 90Cu10NiFe alloy in natural seawater were explained by sodium diethyl dithio carbamate(NaDDC), namely organic compound, which is reagent for heavy metal extractions of waste water. The efficiency of NaDDC as corrosion inhibitor for 90Cu10NiFe alloy has been investigated in seawater after immersion in various concentrations of NaDDC solutions for 12~36hrs at pH 8.2 by weight loss test and electrochemical techniques including potentiodynamic polarization and SEM-EDS measurements. The results showed that the corrosion resistance of 90Cu10NiFe alloy improves with the increasing concentration of NaDDC but it did not improves with increasing time any more, so the highest inhibition efficiency was 93% at 100mg/L, 36hrs. The results obtained from weight losses and corrosion rates in polarization curve measurements were in good agreement. Therefore, it showed that NaDDC is a good inhibitor for copper corrosion of 90Cu10NiFe alloy.

A Study on Oxidation Mechanism in Mechanically Alloyed ODS Ni-base Alloy

  • Kim, I.H.;Kwun, S.I.;Park, J.P.;Lee, W.S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2003.10a
    • /
    • pp.65-66
    • /
    • 2003
  • 1. The oxidation resistance of $Y_{2}O_{3}$ containing Ni-base alloy is superior to that of the alloy without $Y_{2}O_{3}$. 2. The appearance of oxides of Ni-20Cr-20Fe-5Nb-$1Y_{2}O_{3}$ alloy is similar to that of oxides in commercial PM1000 and MA754 alloy. 3. The oxides in ODS alloy are grown mainly at particle boundaries.

  • PDF

Corrosion Behavior of High Pressure Die Cast Al-Ni and Al-Ni-Ca Alloys in 3.5% NaCl Solution

  • Arthanari, Srinivasan;Jang, Jae Cheol;Shin, Kwang Seon
    • Corrosion Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.100-108
    • /
    • 2017
  • In this investigation corrosion behavior of newly developed high-pressure die cast Al-Ni (N15) and Al-Ni-Ca (NX1503) alloys was studied in 3.5% NaCl solution. The electrochemical corrosion behavior was evaluated using open circuit potential (OCP) measurement, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques. Potentiodynamic polarization results validated that NX1503 alloy exhibited lower corrosion current density ($i_{corr}$) value ($5.969{\mu}A/cm^2$) compared to N15 ($7.387{\mu}A/cm^2$). EIS-Bode plots revealed a higher impedance (${\mid}Z{\mid}$) value and maximum phase angle value for NX1503 than N15 alloy. Equivalent circuit curve fitting analysis revealed that surface layer ($R_1$) and charge transfer resistance ($R_{ct}$) values of NX1503 alloy was higher compared to N15 alloy. Immersion corrosion studies were also conducted for alloys using fishing line specimen arrangement to simultaneously measure corrosion rates from weight loss ($P_W$) and hydrogen volume ($P_H$) after 72 hours and NX1503 alloy had lower corrosion rate compared to N15 alloy. The addition of Ca to N15 alloy significantly reduced the Al3Ni intermetallic phase and further grain refinement may be attributed for reduction in the corrosion rate.

Effect of Heat Treatment on Interface Behavior in Ni-P/Cr Double Layer (열처리 시간에 따른 Ni-P/Cr 이중 도금 층의 계면 거동에 관한 연구)

  • Choi, Myung-Hee;Park, Young-Bae;Rhee, Byong-ho;Byon, Eungsun;Lee, Kyu Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.260-268
    • /
    • 2015
  • The thermal barrier coating (TBC) for inner wall of liquid-fuel rocket combustor consists of NiCrAlY as bonding layer and $ZrO_2$ as a top layer. In most case, the plasma spray coating is used for TBC process and this process has inherent possibility of cracking due to large difference in thermal expansion coefficients among bonding layer, top layer and metal substrate. In this paper, we suggest crack-free TBC process by using a precise electrodeposition technique. Electrodeposited Ni-P/Cr double layer has similar thermal expansion coefficient to the Cu alloy substrate resulting in superior thermal barrier performance and high temperature oxidation resistance. We studied the effects of phosphorous concentrations (2.12 wt%, 6.97 wt%, and 10.53 wt%) on the annealing behavior ($750^{\circ}C$) of Ni-P samples and Cr double layered electrodeposits. Annealing temperature was simulated by combustion test condition. Also, we conducted SEM/EDS and XRD analysis for Ni-P/Cr samples. The results showed that the band layers between Ni-P and Cr are Ni and Cr, and has no formed with heat treatment. These band layers were solid solution of Cr and Ni which is formed by interdiffusion of both alloy elements. In addition, the P was not found in it. The thickness of band layer was increased with increasing annealing time. We expected that the band layer can improve the adhesion between Cr and Ni-P.

Study of Thermal Stability of Ni Silicide using Ni-V Alloy

  • Zhong, Zhun;Oh, Soon-Young;Lee, Won-Jae;Zhang, Ying-Ying;Jung, Soon-Yen;Li, Shi-Guang;Lee, Ga-Won;Wang, Jin-Suk;Lee, Hi-Deok;Kim, Yeong-Cheol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.47-51
    • /
    • 2008
  • In this paper, thermal stability of Nickel silicide formed on p-type silicon wafer using Ni-V alloy film was studied. As compared with pure Ni, Ni-V shows better thermal stability. The addition of Vanadium suppresses the phase transition of NiSi to $NiSi_2$ effectively. Ni-V single structure shows the best thermal stability compared with the other Ni-silicide using TiN and Co/TiN capping layers. To enhance the thermal stability up to $650^{\circ}C$ and find out the optimal thickness of Ni silicide, different thickness of Ni-V was also investigated in this work.

In Situ Observation of Solidification Behavior in Undercooled $Pd_{40}Cu_{30}Ni_{10}P_{20}$ Alloy Melts during Linear Cooling (연속냉각 중 과냉 된 $Pd_{40}Cu_{30}Ni_{10}P_{20}$ 합금 용탕의 실시간 응고거동 관찰)

  • Kim, Ji-Hun
    • Journal of Korea Foundry Society
    • /
    • v.23 no.5
    • /
    • pp.276-285
    • /
    • 2003
  • In the undercooled melt of $Pd_{40}Cu_{30}Ni_{10}P_{20}$ alloy, the solidification behavior including nucleation and growth of crystals at the micrometer level has been observed in-situ by use of a confocal scanning laser microscope combined with an infrared image furnace. The $Pd_{40}Cu_{30}Ni_{10}P_{20}$ alloy specimens were cooled from the liquid state to glass transition temperature. 575 K, at various cooling late under a helium gas flow. According to the cooling rate, the morphologies of the solidification front are changed among various types, irregular jog like front, columnar dendritic front, cellular grain, star like shape jog and fine grain, etc. The velocities of the solid-liquid interface are measured to be $10^{-5}{\sim}10^{-8}$ m/s which are at least two orders higher than the theoretical crystal growth rates. Combining the morphologies observed in terms of cooling rates and their solidification behaviors, we conclude that phase separation takes place in the undercooled molten $Pd_{40}Cu_{30}Ni_{10}P_{20}$ alloy. The continuous cooling transformation (CCT) diagram was constructed from solidification onset time at various linear cooling conditions with different rate. The CCT diagram suggests that the critical cooling rate for glassy solidification is about 1.5 K/s, which is in agreement with the previous calorimetric findings.