• 제목/요약/키워드: Ni-P alloy

검색결과 226건 처리시간 0.014초

니켈-인 도금 층의 기계적 성질에 미치는 아인산 농도의 영향 (Effect of Phosphorous Acid Concentration on Mechanical Properties of Ni-P Electrodeposits)

  • 강수영;양승기;황운석
    • 한국표면공학회지
    • /
    • 제48권3호
    • /
    • pp.100-104
    • /
    • 2015
  • The nickel alloys gets a great deal of attention due to their good mechanical, chemical and magnetic properties. Especially Ni-P alloy systems are very attractive due to their good corrosion resistance and the wear resistance in important technological applications. In this study, the effects of phosphorus acid concentration in plating solution on composition of Ni-P alloy coatings were studied. The Ni-P electrodeposits of the various P contents were investigated in order to understand effect of the composition on mechanical properties of Ni-P electrodeposits. The mechanical properties of electrodeposits increased as the P content in electrodeposits increase. The results of mechanical properties were explained by grain size and P solid solution effect. The effects of heat treatment on mechanical properties of Ni-P alloy coatings were also studied.

Alloy 600에 전기 도금한 Ni-P-Fe 및 Ni-P-B 층의 열적 안정성 연구 (Study on Thermal Stability of Ni-P-Fe and Ni-P-B Layers Electroplated on Alloy 600)

  • 김명진;김정수;김동진;김홍표
    • 한국표면공학회지
    • /
    • 제43권2호
    • /
    • pp.57-63
    • /
    • 2010
  • In this study, thermal stability of the mechanical properties of Ni-P-B and Ni-P-Fe layers electroplated on Alloy 600 material was evaluated by measuring their microhardness, tensile strength, and elongation after heat treatment at $325^{\circ}C$ and $400^{\circ}C$. According to the results, there was no noticeable change in microhardness of the two electrodeposits before and after heat treatment at the temperatures for 30 days. In the case of a Ni-P-B electrodeposit, ultimate tensile strength (UTS) slightly increases with heat treatment time, while its elongation decreases, showing good thermal stability in the mechanical properties at high temperature. On the other hand, UTS and elongation of Ni-P-Fe decrease with heat treatment time, which is very unusual observation. This result was attributed to the bad microstructure of Ni-P-Fe having many defects in the deposit formed early stage of an electroplating process and their redistribution to link to become large ones during heat treatment.

Ni-P 합금의 전기전도도와 경도에 대한 도금 조건의 영향 (Effect of Electroplating Parameters on Conductivity and Hardness of Ni-P Alloy)

  • 김남길;선용빈
    • 마이크로전자및패키징학회지
    • /
    • 제24권3호
    • /
    • pp.77-81
    • /
    • 2017
  • Pulse electroplating of Ni-P alloy was studied to fulfill the material requirement to the advanced vertical probe tip in wafer probe card. The major concerns are for the electrical conductivity and yield strength. Plating parameters such as current density, duty cycle and solution components were examined to obtain the nanocrystal structure and proper percentage of phosphorus, leading to how to control the nanocrystal grain growth and precipitation of $Ni_3P$ after heat treatment. Among the parameters, the amount of phosphorus acid was the main factor affecting on the grain size and sheet resistance, and the amount of 0.1 gram was appropriate. Since hardness in Ni-P alloy is increased by as-plated nanocrystal structure plus precipitation of $Ni_3P$, the concentration of P less than 15 at% was better choice for the grain coarsening without minus in hardness value. The following heat treatment made grain growth and dispersion of precipitates adjustable to meet the target limit of resistance of $100m{\Omega}$ and hardness number of over 1000Hv. The Ni-P alloy will be a candidate for the substitute of the conventional probe tip material.

수열합성법을 이용한 NiCrAl 합금 폼 위에 합성된 NiO 촉매 형상 제어 (Morphology Control of NiO Catalysts on NiCrAl Alloy Foam Using a Hydrothermal Method)

  • 신동요;이은환;박만호;안효진
    • 한국재료학회지
    • /
    • 제26권7호
    • /
    • pp.393-399
    • /
    • 2016
  • Flower-like nickel oxide (NiO) catalysts were coated on NiCrAl alloy foam using a hydrothermal method. The structural, morphological, and chemical bonding properties of the NiO catalysts coated on the NiCrAl alloy foam were investigated by field-emission scanning electron microscopy, scanning electron microscopy-energy dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, respectively. To obtain flower-like morphology of NiO catalysts on the NiCrAl alloy foam, we prepared three different levels of pH of the hydrothermal solution: pH-7.0, pH-10.0, and pH-11.5. The NiO morphology of the pH-7.0 and pH-10.0 samples exhibited a large size plate owing to the slow reaction of the hydroxide ($OH^-$) and nickel ions ($Ni^+$) in lower pH than pH-11.5. Flower-like NiO catalysts (${\sim}4.7{\mu}m-6.6{\mu}m$) were formed owing to the fast reaction of $OH^-$ and $Ni^{2+}$ by increased $OH^-$ concentration at high pH. Thus, the flower-like morphology of NiO catalysts on NiCrAl alloy foam depends strongly on the pH of the hydrothermal solution.

전착법에 의한 Fe-45 wt%Ni-P 합금의 조직과 자기적 성질에 관한 연구 (A Study of Structures and Magnetic Properties of Electrodeposited Fe-45 wt%Ni-P Alloys)

  • 구승현;이흥렬;김동환;황태진;임태홍
    • 한국표면공학회지
    • /
    • 제36권6호
    • /
    • pp.461-465
    • /
    • 2003
  • The microstructures and magnetic properties of electrodeposited Fe-45 wt%Ni-P alloys have been investigated. The structures of electrodeposited Fe-45 wt%Ni alloy was FCC i.e. ${\gamma}$ phase and the size of crystallite was 10 nm. The structure of electrodeposited Fe-45 wt%Ni-1 wt%P alloy showed ${\gamma}$ phase and 7 nm sized nanocrystalline. The electrodeposited Fe-45 wt%Ni-P alloys containing 2∼3 wt% of P exhibited ${\gamma}$$\alpha$ dual phases. The electrodeposited Fe-45 wt%Ni-P alloys above 3.5 wt% showed an amorphous structure. P in the alloys acted grain refining and phase changing element. The resistivity of the electrodeposited alloys increased with P contents. Effective permeability at high frequency (above 1 MHz) increased with P contents up to 2 wt% and this was ascribed to the easier magnetization rotation owing to the reduction of eddy current. Effective permeability decreased with P contents above 3 wt% and this was ascribed to the transformation of the ferromagnetism of Fe-45 wt%Ni alloy gradually into paramagnetism with the introduction of P into the electrodeposited alloy matrix.

Investigation of Initiation of Electroless Ni-P and Ni-Cu-P deposition on pure iron

  • Yiyong, W-U;Kim, M.;S.C. Kwon
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2001년도 추계학술발표회 초록집
    • /
    • pp.10-10
    • /
    • 2001
  • In this paper, initial depositing process of electroless Ni-Cu-P alloy was investigated by means of SEM, TEM and AES. The results show that the initial deposition is inhomogeneous and there exist different transition layers between different coatings and substrates, which are decided by the structures and compositions of the bath. For Ni-P binary alloy, its deposition takes place superiorly at grain boundary and on some grains with beneficial texture, the thickness of transition layer composed of Ni-Fe-P reaches 2000 angstrom. But during initiation of Ni-Cu-P trinary alloy, only at grain boundary is prIor to be deposited electrolessly, transited layer contains Ni-Fe-Cu-P and is decreased to about 500 angstrom. The structures of the films of Ni-P and Ni-Cu-P are crystalline at the initial depositing stage. The mechanisms of the process are put forward in this paper.

  • PDF

아노다이징된 알루미늄 합금에 대한 TiAlN 코팅, 무전해 Ni-P 도금의 트라이볼로지 특성 비교 (A Comparative Study on Tribological Characteristics between Ni-P Electroless Plating and TiAlN Coating on Anodized Aluminum Alloy)

  • 이규선;배성훈;이영제
    • Tribology and Lubricants
    • /
    • 제26권1호
    • /
    • pp.68-72
    • /
    • 2010
  • A ceramic coating is a surface treatment method that is being used widely in the industrial field, recently. Ni-P plating is also being used widely because of its corrosion resistance and low cost. An anodizing method is applicable to aluminum alloy. An anodizing method generates a thick oxide layer on the surface and then, that heightens hardness and protects the surface. These surface treatments are applied to various mechanical components and treated surfaces relatively move one another. In this study, tribological characteristics of Ni-P plating and TiAlN coating on anodized Al alloy are compared. The counterpart, anodized Al alloy, is worn out abrasively by Ni-P plating and TiAlN coating that have higher hardness. Abrasively worn debris accumulated on the surfaces of Ni-P plating and TiAlN coating, and then transferred layer is formed. This transferred layer affects the amplitude of variation of friction coefficient, which is related to noise and vibration. The amplitude of variation of friction coefficient of Ni-P plating is lower than those of TiAlN coating during the tests.

베릴륨 불포함 치과 주조용 니켈-크롬 합금 중 금속의치상용 합금과 금속소부도재관용 합금의 부식에 관한연구 (Corrosion of the non-beryllium dental casting Ni-Cr alloys for the denture base framework metal and the porcelain-fused-to-metal crown)

  • 김홍식;송재상;박수철
    • 대한치과기공학회지
    • /
    • 제34권4호
    • /
    • pp.337-344
    • /
    • 2012
  • Purpose: This study examined the corrosion level by alloy type and pH, and used the corrosion levels as the dental health data. The study utilized one Ni-Cr alloy for the full and removable partial denture metal frameworks and two Ni-Cr alloys for porcelain-fused-to-metal crown, among the non-beryllium dental casting non-precious Ni-Cr alloys. Methods: The alloy specimens were manufactured in $10cm^2$ and stored in the corrosive solution(pH 2.2-4.4) in the electrical water bath($37^{\circ}C$) for seven days. Afterwards, the metal ions were quantitatively analyzed using the ICP. Results: Of the three metal alloys, Bellabond-Plus$^{(R)}$alloy and SOLIBOND N$^{(R)}$alloy, with 22% or higher chrome chemical contents, had higher corrosion resistance than Jdium-100$^{(R)}$alloy with 20% chrome chemical content. In all three alloys, the corrosion of Ni was highest, and metal ion corrosion was higher in the pH 2.2 corrosive solution. Conclusion: Although Ni-Cr alloy was not very corrosive, a Ni-allergic patient should not have Ni-Cr alloy prosthesis. The Ni-Cr alloy for porcelain-fused-to-metal crown should be designed for the dental porcelain to cover the whole crown.

비정질 $Zr_{65}Al_8Ni_{15}Cu_{12}$ 금속합금의 전기화학적 부식 특성 (Electrochemical Corrosion Behaviors of Amorphous $Zr_{65}Al_8Ni_{15}Cu_{12}$ Alloy)

  • 김현구
    • 통합자연과학논문집
    • /
    • 제2권4호
    • /
    • pp.233-236
    • /
    • 2009
  • This study was undertaken to measure the electrochemical corrosion of amorphous $Zr_{65}Al_8Ni_{15}Cu_{12}$ (at.%) alloy ribbon under various conditions, including 0.4 mM HCl solution, and for various values of the pH and the immersion time. The corrosion potentials($E_{corr}$) for the amorphous $Zr_{65}Al_8Ni_{15}Cu_{12}$ alloy in 0.4 mM HCl decreased with increasing temperature; the corrosion current density($I_{corr}$) increased with increasing temperature in general. The polarization resistance($R_p$) was inversely proportional to the corrosion rate. While pH=7, 9, 11 was not as sensitive as pH=3, 5, pH=3 was more sensitive for amorphous $Zr_{65}Al_8Ni_{15}Cu_{12}$ alloy than other pHs specially. The change of mass in the 70 mM $H_2SO_4$ solution with immersion time was the greatest in the first 100 h.

  • PDF

Ni-Fe-P 합금전착에 미치는 Grain Refiner의 영향 (The Effect of Grain Refiner on Ni-Fe-P Alloy Electrodeposition)

  • 서무홍;김동진;김정수
    • 한국표면공학회지
    • /
    • 제36권6호
    • /
    • pp.437-443
    • /
    • 2003
  • The effects of additive(grain refiner, GR) on process efficiency of the Ni-Fe-P alloy electrodeposition and the material properties of the deposit were investigated. Electrochemical properties of the deposits were investigated using polarization and electrochemical impedance techniques, and the material properties of the deposits were characterized through inductively coupled plasma(ICP), spiral contractometer, XRD, SEM and TEM. When the additive was added into the electrodeposition bath, current efficiency, Ni content and corrosion resistance of the deposit increased, whereas residual stress, surface roughness and grain size of the deposit decreased.