DOI QR코드

DOI QR Code

Morphology Control of NiO Catalysts on NiCrAl Alloy Foam Using a Hydrothermal Method

수열합성법을 이용한 NiCrAl 합금 폼 위에 합성된 NiO 촉매 형상 제어

  • Sin, Dong-Yo (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Lee, Eun-Hwan (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Park, Man-Ho (Alantum) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 신동요 (서울과학기술대학교 신소재공학과) ;
  • 이은환 (서울과학기술대학교 신소재공학과) ;
  • 박만호 ((주) Alantum) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Received : 2016.04.29
  • Accepted : 2016.06.20
  • Published : 2016.07.27

Abstract

Flower-like nickel oxide (NiO) catalysts were coated on NiCrAl alloy foam using a hydrothermal method. The structural, morphological, and chemical bonding properties of the NiO catalysts coated on the NiCrAl alloy foam were investigated by field-emission scanning electron microscopy, scanning electron microscopy-energy dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, respectively. To obtain flower-like morphology of NiO catalysts on the NiCrAl alloy foam, we prepared three different levels of pH of the hydrothermal solution: pH-7.0, pH-10.0, and pH-11.5. The NiO morphology of the pH-7.0 and pH-10.0 samples exhibited a large size plate owing to the slow reaction of the hydroxide ($OH^-$) and nickel ions ($Ni^+$) in lower pH than pH-11.5. Flower-like NiO catalysts (${\sim}4.7{\mu}m-6.6{\mu}m$) were formed owing to the fast reaction of $OH^-$ and $Ni^{2+}$ by increased $OH^-$ concentration at high pH. Thus, the flower-like morphology of NiO catalysts on NiCrAl alloy foam depends strongly on the pH of the hydrothermal solution.

Keywords

References

  1. D. Das and T. N. Veziroglu, Int. J. Hydrogen Energy, 26, 13 (2001). https://doi.org/10.1016/S0360-3199(00)00058-6
  2. Y. Ding and E. Alpay, Chem. Eng. Sci., 55, 3929 (2000). https://doi.org/10.1016/S0009-2509(99)00597-7
  3. T. Kodama, A. Kiyama and K. -I. Shimizu, Energy Fuels, 17, 13 (2003). https://doi.org/10.1021/ef0200525
  4. J. P. Breen, R. Burch and H. M. Coleman, Appl. Catal. B, 39, 65 (2002). https://doi.org/10.1016/S0926-3373(02)00075-9
  5. Y. -J. Lee, G. -H. An, M. -H. Park, C. -W. Lee, S. -H. Choi, J. -Y. Jung, S. -J. Jo, K. -J. Lee and H. -J. Ahn, Kor. J. Mater. Res., 24, 393 (2014). https://doi.org/10.3740/MRSK.2014.24.8.393
  6. S. Ayabe, H. Omoto, T. Utaka, R. Kikuchi, K. Sasaki, Y. Teraoka and K. Eguchi, Appl. Catal. A, 241, 261 (2003). https://doi.org/10.1016/S0926-860X(02)00471-4
  7. K. S. Go, S. R. Son, S. D. Kim, K. S. Kang and C. S. Park, Int. J. Hydrogen Energy, 34, 1301 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.062
  8. D. Dissanayake, M. P. Rosynek, K. C. C. Kharas and J. H. Lunsford, J. Catal., 132, 117 (1991). https://doi.org/10.1016/0021-9517(91)90252-Y
  9. Y. -J. Lee, B. -R. Koo, S. -H. Baek, M. -H. Park and H. -J. Ahn, Korean J. Mater. Res., 25, 391 (2015). https://doi.org/10.3740/MRSK.2015.25.8.391
  10. N. Laosiripojana and S. Assabumrungrat, Appl. Catal. A, 290, 200 (2005). https://doi.org/10.1016/j.apcata.2005.05.026
  11. H. Choe and D. C. Dunand, Acta Mater., 52, 1283 (2004). https://doi.org/10.1016/j.actamat.2003.11.012
  12. P. Wu, X. Li, S. Ji, B. Lang, F. Habimana and C. Li, Catal. Today, 146, 82 (2009). https://doi.org/10.1016/j.cattod.2009.01.031
  13. J. Jia, J. Zhou, C. Zhang, Z. Yuan, S. Wang, L. Cao and S. Wang, Appl. Catal. A, 341, 1 (2008). https://doi.org/10.1016/j.apcata.2007.11.006
  14. Y. Tang, Y. Liu, S. Yu, Y. Zhao, S. Mu and F. Gao, Electrochim. Acta, 123, 158 (2014). https://doi.org/10.1016/j.electacta.2013.12.187
  15. Y. Cui, C. Wang, S. Wu, G. Liu, F. Zhang and T. Wang, Cryst. Eng. Comm., 13, 4930 (2011). https://doi.org/10.1039/c1ce05389b
  16. J. W. Kim, J. H. Lee, H. C. Jang and K. -A. Lee, J. Korean Powder Metall. Inst., 22, 408 (2015). https://doi.org/10.4150/KPMI.2015.22.6.408
  17. J. T. Richardson, R. Scates and M. V. Twigg, Appl. Catal. A, 246, 137 (2003). https://doi.org/10.1016/S0926-860X(02)00669-5
  18. K. S. Kim and R. E. Davis, J. Electron Spectrosc., 1, 251 (1972). https://doi.org/10.1016/0368-2048(72)85014-X
  19. A. P. Grosvenor, M. C. Biesinger, R. S. C. Smart and N. S. Mcintyre, Surf. Sci., 600, 1771 (2006). https://doi.org/10.1016/j.susc.2006.01.041
  20. A. Velon and D. -Q. Yi, Oxid. Met., 57, 13 (2002). https://doi.org/10.1023/A:1013386427567
  21. A. M. Venezia and C. M. Loxton, Surf. Sci., 225, 195 (1990). https://doi.org/10.1016/0039-6028(90)90438-E