• Title/Summary/Keyword: Ni-Mg ferrite

Search Result 10, Processing Time 0.024 seconds

The Study of Magnetic Structure of Ni1-xMgxFe2O4 Ferrite System by Mössbauer Spectroscopy (Mössbauer 분광법에 의한 Ni1-xMgxFe2O4 Ferrite의 자기구조 연구)

  • Yoon, In-Seop;Baek, Seung-Do
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.3
    • /
    • pp.106-112
    • /
    • 2009
  • $Ni_{1-x}Mg_xFe_2O_4$ ferrite system was studied by using X-ray diffraction and $M{\ddot{o}}ssbauer$ spectroscopy. The samples were prepared by ceramic sintering method with Mg content x. The X-ray diffraction patterns of samples show phase of cubic spinel structure. There are no remarkable changes of lattice constants in $Ni_{1-x}Mg_xFe_2O_4$ ferrite system. The $M{\ddot{o}}ssbauer$ spectra were consisted of two sets of six lines, respectively, corresponding to $Fe^{3+}$ at tetrahedral and octahedral sites. The magnetic hyperfine field of samples was decreased as increasing Mg contents x in both sites and it was shown Yafet-Kittel magnetic structure. $NiFe_2O_4$ was shown complete inverse spinel, but $NiFe_2O_4$ was shown partial inverse spinel which absorption area ratio (oct/tet) was 1.449 in $M{\ddot{o}}ssbauer$ spectrum.

Preparation of Nano-sized MgxNiyZn1-x-yFe2O4 by Ultrasonic Wet-Magnetic Separation Method (초음파 습식 자기분류법을 이용한 MgxNiyZn1-x-yFe2O4 나노입자 제조)

  • Gu, Moon Sun;Kwon, Hyuk Joo;Choi, Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.3
    • /
    • pp.212-218
    • /
    • 2017
  • $Mg_xNi_yZn_{1-x-y}Fe_2O_4$ ferrite powders were prepared by self-propagating high temperature synthesis followed by classifying with an ultrasonic wet-magnetic separation unit to get high pure nano-sized particles. The $Mg_xNi_yZn_{1-x-y}Fe_2O_4$ ferrites were well formed by using several powders like iron, nickel oxide, zinc oxide and magnesium oxide at 0.1 MPa of oxygen pressure. The ultrasonic wet-magnetic separation of pre-mechanical milled ferrite powders resulted in producing the powders with average size of 800 nm. The addition of a surfactant during the wet-magnetic separation process improved productivity more than twice. The coercive force, maximum magnetization and residual magnetization of the $Mg_xNi_yZn_{1-x-y}Fe_2O_4$ nano-powders with 800 nm size were 3651 A/m, $53.92Am^2/kg$ and $4.0Am^2/kg$, respectively.

Application of Ultrasonic Wet-Magnetic Separation Method to Prepare Nano-sized MgxNiyZn1-x-yFe2O4 (MgxNiyZn1-x-yFe2O4나노입자 제조를 위한 초음파 습식 자기분류법의 적용)

  • Gu, Mun-Seon;Choe, Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.201.2-201.2
    • /
    • 2016
  • $Mg_xNi_yZn_{1-x-y}Fe_2O_4$ ferrite powders were prepared by self-propagating high temperature synthesis followed by classified by ultrasonic wet-magnetic separation method to get nano-sized particles with high purity. The $Mg_xNi_yZn_{1-x-y}Fe_2O_4$ ferrites were well formed by using several powders like iron, nickel oxide, zinc oxide and magnesium oxide at 0.1 MPa of oxygen pressure. The ultrasonic wet-magnetic separation of pre-mechanical milled ferrite powders produced the powders with average size of $3.7-0.8{\mu}m$. The addition of a surfactant during the separation process improved productivity more than twice. The coercive force, maximum magnetization and residual magnetization of the $Mg_xNi_yZn_{1-x-y}Fe_2O_4$ nano-powders with 810 nm size were 45.89 Oe, 53.92 emu/gOe, 0.4 emu/Oe, respectively.

  • PDF

A Study on Electromagnetic Wave Absorbing Properties of $Ni_{0.5}$$-A_{0.1}$-$Zn_{0.4}$.${Fe_2}{O_4}$Ferrite-Rubber Composite by Heat-Treatment Temperature of ferrite (전파흡수체용 $Ni_{0.5}$$-A_{0.1}$-$Zn_{0.4}$.${Fe_2}{O_4}$의 열처리 온도에 따른 Ferrite-Rubber Composite의 전파흡수특성에 관한 연구)

  • 박연준;김동일;이창우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.109-114
    • /
    • 2000
  • In this paper, we studied the relation between heat-treatment temperature of ferrite and electromagnetic wave absorbing properties of ferrite-rubber composite. The heat-treatment temperatures of ferrite are 1200 and 1300 $^{\circ}C$, 2 hr. As s result, it has been shown that the optimum heat-treatment temperature of ferrite for electromagnetic wave absorber are related to the chemical composition. And, we can control electromagnetic wave absorbing properties of ferrite-rubber composite by the control of heat-treatment temperature of ferrite.

  • PDF

A Study on $[Ni_x-Mg_{0.1}-Zn_{(1-x-0.1)}{\cdot}Fe_2O_4]$-Rubber Composite for Electromagnetic Wave Absorber (전파흡수체용 $[Ni_x-Mg_{0.1}-Zn_{(1-x-0.1)}{\cdot}Fe_2O_4]$-Rubber Composite에 관한 연구)

  • 박연준;김동일
    • Journal of the Korean Institute of Navigation
    • /
    • v.22 no.4
    • /
    • pp.69-75
    • /
    • 1998
  • The super wideband electromagnetic wave absorber in RF-A-PF type has been proposed, which can be used for an anechoic chamber, wall material to prevent TV ghost, etc, In this paper, $Ni_x-Mg_{0.1}-Zn_(1-x-0.1){\cdot}Fe_2O_4$ Ferrite Powder has been fabricated. Using this, then, [$Ni_x-Mg_{0.1}-Zn_(1-x-0.1){\cdot}Fe_2O_4$-Rubber composite for RF-layer in the RF-A-PF type absorber has been fabricated and its characteristics has been analyzed. As a result, it has been shown that the $Ni_x-Mg_{0.1}-Zn_(1-x-0.1){\cdot}Fe_2O_4$-Rubber composit with the quantity $_x$ of $Ni_x$ between 0.5 and 0.6 is suitable for the RF-layer in the case of which the grain size is sub-micrometer order.

  • PDF

The Effect of Additions and Sintering Temperature on Magnetic Properties of Ni-Zn Ferrite (Ni-Zn Ferrite의 자기특성에 미치는 소결온도와 첨가제의 영향)

  • 이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.2
    • /
    • pp.83-90
    • /
    • 1981
  • In this study, the effect of additions on magnetic properties in the system of [$Ni_{0.32}Zn_{0.68}$] 1-x Mx $Fe_2O_4$ have been investigated. The additions, Co or Mg or Cu, was added in turn in place of M, and its composition was varied from 0.1 mo1% to 0.5 mo1%. The materials were blended by hot petroleum drying method, and sintered with the rate of 30$0^{\circ}C$/h in the air. The sintering temperatures were varied from 110$0^{\circ}C$ to 130$0^{\circ}C$, with the intervals of 5$0^{\circ}C$, and matured for 3hrs. The results are: 1) The permeability decreased when the addition, MgO or CoO, was added, and it increased when CuO was added. 2) Resistivity had the lowest Value when CuO was added.

  • PDF

Study on The Synthesis of The Ultra-Fine (Ni, Zn)-ferrite by The Hydrothermal Method and its $CO_2$ Decomposition (수열합성법에 의한(Ni, Zn)-Ferrites의 초미세분말 합성공정 및 $CO_2$분해 특성 연구)

  • Kim, Jeong-Sik;An, Jeong-Ryul;Ryu, Ho-Jin
    • Korean Journal of Materials Research
    • /
    • v.10 no.3
    • /
    • pp.223-226
    • /
    • 2000
  • The oxygen deficient ferrites $(Ni_x,\; Zn_{1-x})Fe_2O_{4-{\delta}}$ can decompose $CO_2$ as C and $O_2$ at a low temperature of about $300^{\circ}C$. Ultra powders of $(Ni_x,\; Zn_{1-x})Fe_2O_4$ for the $CO_2$ decomposition were prepared by the hydrothermal methods. The XRD result of synthesized ferries showed the spinel structure of ferrites and ICP-AES and EDS quantitative analyses showed the composition similar with the starting molar ratios of the mixed solution prior to reaction. The BET surface area of the synthesized(Ni, Zn)-ferrites was above $110\textrm{m}^2/g$ and its particle size was very as small as about 5~10 nm. The $CO_2$ decomposition efficiency of the oxygen deficient ferrites($(Ni_x,\;Zn_{1-x})Fe_2O_{4-{\delta}}$) was almost independent with composition and the $CO_2$ decomposition efficiency of ternary (Ni, Zn)-ferrites was better than of binary Ni-ferrites.

  • PDF

Variation of Magnetic Properties of Cu-Zn-Mg Ferrites with Various Compositions and Sintering Temperatures (Cu-Zn-Mg ferrite의 조성성분 및 소결온도에 따른 자기적 특성변화 연구)

  • Koh, Jae-Gui
    • Korean Journal of Materials Research
    • /
    • v.13 no.6
    • /
    • pp.365-368
    • /
    • 2003
  • Small amounts of additives such as mol % 0.13 NiO and mol % 0.01 $CaCO_3$were added to Cu-Zn-Mg ferrites. Basic composition of the Cu-Zn-Mg ferrites was $Cu_{Cu}$X/$Fe_{0.054}$ /$Zn_{0.486}$$Mg_{0.407}$ $Fe_{1.946}$ $O_4$(group A) and $Cu_{0.263}$$Fe_{0.027}$ $Zn_{0.503}$ $Mg_{0.262}$ $Fe_{1.973}$ $O_4$(group B). Specimens were sintered at different temperatures (1010, 1030, $1050^{\circ}C$) for 2 hours in air followed by an air cooling. Then, effects of various composition and sintering temperatures on the microstructure and the magnetic properties such as inductions, coercive forces, and initial permeabilities of the Cu-Zn-Mg ferrites were investigated. The average grain size increased with the increase of sintering temperature. The magnetic properties obtained from the aforementioned Cu-Zn-Mg ferrite specimens were 1,724 gauss for the maximum induction, 1.0 oersted for the coercive force, and 802 for the initial permeability. These magnetic properties indicated that the specimens could be utilized as the core of IFT (intermediate frequency transformer) and antenna in the amplitude modulation.

Evaluation of Magnetic and Thermal Properties of Ferrite Nanoparticles for Biomedical Applications

  • Tomitaka, Asahi;Jeun, Min-Hong;Bae, Seong-Tae;Takemura, Yasushi
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.164-168
    • /
    • 2011
  • Magnetic nanoparticles can potentially be used in drug delivery systems and for hyperthermia therapy. The applicability of $Fe_3O_4$, $CoFe_2O_4$, $MgFe_2O_4$, and $NiFe_2O_4$ nanoparticles for the same was studied by evaluating their magnetization, thermal efficiency, and biocompatibility. $Fe_3O_4$ and $CoFe_2O_4$ nanoparticles exhibited large magnetization. $Fe_3O_4$ and $NiFe_2O_4$ nanoparticles exhibited large induction heating. $MgFe_2O_4$ nanoparticles exhibited low magnetization compared to the other nanoparticles. $NiFe_2O_4$ nanoparticles were found to be cytotoxic, whereas the other nanoparticles were not cytotoxic. This study indicates that $Fe_3O_4$ nanoparticles could be the most suitable ones for hyperthermia therapy.

The Stress Corrosion Cracking Resistance of Heat Treated STS304 Stainless Steel Welded Metal (304 스테인리스강 용접금속의 열처리에 따른 응력부식균열)

  • Cho, D.H.;Kim, H.R.;Nam, T.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.1
    • /
    • pp.34-44
    • /
    • 1996
  • Austenite stainless steel was produced by arc welding with current 650A, voltage 50V and welding speed 10cm/min. It was post-welded and then heat treated at $1,050^{\circ}C$ for 120min. And then it was immersed in water or in air. The microstructural changes, ferrite contents, mechanical properties, and stress corrosion cracking(SCC) were investigated. The SCC was studied in 42wt% boiling $MgCl_2$($140^{\circ}C$) under the constant stress using SCC elongation curve. The results showed that; 1. The as-welded spedimen seemed to increase ${\delta}$-ferrite content largely, and revealed continuous network of lathy and vermicular type. The post-welded heat treatment changed the morphologies of ferrite from continuous type to island type. 2. The as-welded, air and water quenched specimens had the ${\delta}$-ferrite content 9.7%, 3.2% and 2.1% respectively. We also showed that ${\delta}$-ferrite was Cr-rich and Ni-poor by EPMA. 3. The time of failure on the SCC was measured and it was used for corrosion elongation curve. The condition of SCC was investigated under $35kgf/mm^2$ load and the results were as follows; 4. The intergranullar cracking by stress corrosion was most distinct in weld metal while the transgranular cracking occurred in the air cooled specimen.

  • PDF