• Title/Summary/Keyword: Ni-Fe

Search Result 2,512, Processing Time 0.028 seconds

High Temperature Precipitation Behavior of High-Nitrogen Duplex Stainless Steel (고질소 2상 스테인리스강의 고온 석출거동)

  • Bae, Jong-In;Kim, Sung-Tae;Lee, Tae-Ho;Ha, Heon-Young;Kim, Sung-Joon;Park, Yong-Ho
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.93-103
    • /
    • 2011
  • Precipitation behavior of high-nitrogen duplex Fe-24Cr-7Mn-4Ni-4Mo-0.43N stainless steel aged at $850^{\circ}C$ was investigated using scanning transmission electron microscopy. Based on the analyses of selected area diffraction patterns, four kinds of precipitates (intermetallic sigma (${\sigma}$) and chi (${\chi}$), $Cr_2N$ and secondary austenite) were identified. At the ferrite/austenite phase boundary, the ${\sigma}$ phase and secondary austenite were formed via ${\alpha}{\rightarrow}{\gamma}+{\sigma}$ eutectoid reaction. The precipitation of $Cr_2N$ occurred at the austenite grain boundary as well as the interior of the ferrite. The intermetallic ${\chi}$ phase also formed within the ferrite and showed a cube-cube orientation relationship with the ferrite. Further aging produced a lamellar structure composed of $Cr_2N$ and austenite along the ferrite/austenite boundary and enhanced the precipitation of the ${\chi}$ phase. The crystallographic features of the precipitates were also examined in terms of the orientation relationship with the austenite or ferrite matrix.

A Study on the Formation of Imperfections in CW $CO_2$Laser Weld of Diamond Saw Blade

  • Shin, M.;Lee, C.;Kim, T.;Park, H.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.21-24
    • /
    • 2002
  • The main purpose of this study was to investigate the formation mechanisms of imperfections such as irregular humps, outer cavity and inner cavity in the laser fusion zone of diamond saw blade. Laser beam welding was conducted to join two parts of blade; mild steel shank and Fe-Co-Ni sintered tip. The variables were beam power and travel speed. The microstructure and elements distributions of specimens were analyzed with SEM, AES, EPMA and so on. It was found that these imperfections were responded to heat input. Irregular humps were reduced in 10.4∼l7.6kJ/m heat input range. However there were no clear evidences, which could explain the relations between humps formation and heat input. The number of outer cavity and inner cavity decreased as heat input was increased. Considering both possible defects formations mechanisms, it could be thought that outer cavity was caused by insufficient refill of keyhole, which was from rapid solidification of molten metal and fast molten metal flow to the rear keyhole wall at low heat input. More inner cavities were found near the interface of the fusion zone and sintered segment and in the bottom of the fusion zone. Inner cavity was mainly formed in the upper fusion zone at high heat input whereas was in the bottom at low heat input. Inner cavity was from trapping of coarsened preexist pores in the sintered tip and metal vapor due to rapid solidification of molten metal before the bubbles escaped.

  • PDF

Strengthening of prestressed girder-deck system with partially debonding strand by the use of CFRP or steel plates: Analytical investigation

  • Haoran Ni;Riliang Li;Riyad S. Aboutaha
    • Computers and Concrete
    • /
    • v.31 no.4
    • /
    • pp.349-358
    • /
    • 2023
  • This paper describes an in-depth analysis on flexural strength of a girder-deck system experiencing a strand debonding damage with various strengthening systems, based on finite element software ABAQUS. A detailed finite element analysis (FEA) model was developed and verified against the relevant experimental data performed by other researchers. The proposed analytical model showed a good agreement with experimental data. Based on the verified FE model, over a hundred girder-deck systems were investigated with the consideration of following variables: 1) debonding level, 2) span-to-depth ratio (L/d), 3) strengthening type, 4) strengthening material thickness. Based on the data above, a new detailed analytical model was developed and proposed for estimating residual flexural strength of the strand-debonding damaged girder-deck system with strengthening systems. It was demonstrated that both finite element model and analysis model could be used to predict flexural behaviors for debonding damaged prestressed girder-deck systems. Since the strands are debonding from surrounding concrete over a certain zone over the length of the beam, the increase of strain in strands can be linked with a ratio ψ, which is Lp/c. The analytical model was proposed and developed regarding the ratio ψ. By conducting procedure of calculating ψ, the ψ value varies from 9.3 to 70.1. Multiple nonlinear regression analysis was performed in Software IBM SPSS Statistics 27.0.1 to derive equation of ψ. ψ equation was curved to be an exponential function, and the independent variable (X) is a linear function in terms of three variables of debonding level (λ), span length (L), and amount of strengthening material (As). The coefficient of determinate (R2) for curve fitting in nonlinear regression analysis is 0.8768. The developed analytical model was compared to the ultimate capacities computed by FEA model.

Controlled Surface Functionalities of metals using Femtosecond Laser-induced Nano- and Micro-scale Surface Structures (펨토초 레이저 유도 나노 및 마이크로 구조물을 활용한 금속 표면 기능성 제어)

  • Taehoon Park;Hyo Soo Lee;Hai Joong Lee;Taek Yong Hwang
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.55-61
    • /
    • 2023
  • With femtosecond (fs) laser pulse irradiation on metals, various types of nano- and micro-scale structures can be naturally induced at the surface through laser-matter interaction. Two notable structures are laser-induced periodic surface structures (LIPSSs) and cone/spike structures, which are known to significantly modify the optical and physical properties of metal surfaces. In this work, we irradiate fs laser pulses onto various types of metals, cold-rolled steel, pickled & oiled steel, Fe-18Cr-8Ni alloy, Zn-Mg-Al alloy coated steel, and pure Cu which can be useful for precise molding and imprinting processes, and adjust the morphological profiles of LIPSSs and cone/spike structures for clear structural coloration and a larger range of surface wettability control, respectively, by changing the fluence of laser and the speed of raster scan. The periods of LIPSSs on metals used in our experiments are nearly independent of laser fluence. Accordingly, the structural coloration of the surface with LIPSSs can be optimized with the morphological profile of LIPSSs, controlled only by the speed of the raster scan once the laser fluence is determined for each metal sample. However, different from LIPSSs, we demonstrate that the morphological profiles of the cone/spike structures, including their size, shape, and density, can be manipulated with both the laser fluence and the raster scan speed to increase a change in the contact angle. By injection molding and imprinting processes, it is expected that fs laser-induced surface structures on metals can be replicated to the plastic surfaces and potentially beneficial to control the optical and wetting properties of the surface of injection molded and imprinted products.

Elemental Composition of the Soils using LIBS Laser Induced Breakdown Spectroscopy

  • Muhammad Aslam Khoso;Seher Saleem;Altaf H. Nizamani;Hussain Saleem;Abdul Majid Soomro;Waseem Ahmed Bhutto;Saifullah Jamali;Nek Muhammad Shaikh
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.200-206
    • /
    • 2024
  • Laser induced breakdown spectroscopy (LIBS) technique has been used for the elemental composition of the soils. In this technique, a high energy laser pulse is focused on a sample to produce plasma. From the spectroscopic analysis of such plasma plume, we have determined the different elements present in the soil. This technique is effective and rapid for the qualitative and quantitative analysis of all type of samples. In this work a Q-switched Nd: YAG laser operating with its fundamental mode (1064 nm laser wavelength), 5 nanosecond pulse width, and 10 Hz repetition rate was focused on soil samples using 10 cm quartz lens. The emission spectra of soil consist of Iron (Fe), Calcium (Ca), Titanium (Ti), Silicon (Si), Aluminum (Al), Magnesium (Mg), Manganese (Mn), Potassium (K), Nickel (Ni), Chromium (Cr), Copper (Cu), Mercury (Hg), Barium (Ba), Vanadium (V), Lead (Pb), Nitrogen (N), Scandium (Sc), Hydrogen (H), Strontium (Sr), and Lithium (Li) with different finger-prints of the transition lines. The maximum intensity of the transition lines was observed close to the surface of the sample and it was decreased along the axial direction of the plasma expansion due to the thermalization and the recombination process. We have also determined the plasma parameters such as electron temperature and the electron number density of the plasma using Boltzmann's plot method as well as the Stark broadening of the transition lines respectively. The electron temperature is estimated at 14611 °K, whereas the electron number density i.e. 4.1 × 1016 cm-3 lies close to the surface.

Immunization of mice with chimeric protein-loaded aluminum hydroxide and selenium nanoparticles induces reduction of Brucella melitensis infection in mice

  • Tahereh Goudarzi;Morteza Abkar;Zahra Zamanzadeh;Mahdi Fasihi-Ramandi
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.4
    • /
    • pp.304-312
    • /
    • 2023
  • Purpose: Due to the many problems with commercially available vaccines, the production of effective vaccines against brucellosis is a necessity. The aim of this study was to evaluate the immune responses caused by the chimeric protein consisting of trigger factor, Bp26, and Omp31 (TBO) along with aluminum hydroxide (AH/TBO) and selenium (Se/TBO) nanoparticles (NPs) as adjuvants in mouse model. Materials and Methods: Recombinant antigen expression was induced in Escherichia coli BL21 (DE3) bacteria using IPTG (isopropyl-d-1-thiogalactopyranoside). Purification and characterization of recombinant protein was conducted through NiFe3O4 NPs, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and Western blot. NP characteristics, including morphology and particle size, were measured in vitro. The recombinant TBO was loaded on to AH and Se NPs and were administered subcutaneously. After mice immunization, measurement of antibody titter and protection assay was performed. Results: The average sizes of AH and Se NPs were about 60 nm and 150 nm, respectively. The enzyme-linked immunosorbent assay results showed that the serum of mice immunized by subcutaneous injection with both nanovaccines produced significant immunoglobulin G (IgG) responses against the chimeric antigen. The results of TBO-specific IgG isotype (IgG2a/IgG1) analysis showed that both AH and Se NPs induced a type to T-helper immune response. In addition, the results of the challenge with the pathogenic strain of Brucella melitensis 16M showed that vaccinated mice with AH/TBO NPs indicated a higher reduction of bacterial culture than immunized mice with Se/TBO NPs and TBO alone. Conclusion: The results showed that AH NPs carrying chimeric antigen can be a promising vaccine candidate against brucellosis by producing protective immunity.

Development of a duplex stainless steel for dry storage canister with improved chloride-induced stress corrosion cracking resistance

  • Chaewon Jeong;Ji Ho Shin;Byeong Seo Kong;Junjie Chen;Qian Xiao;Changheui Jang;Yun-Jae Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2131-2140
    • /
    • 2024
  • The chloride-induced stress corrosion cracking (CISCC) is one of the major integrity concerns in dry storage canisters made of austenitic stainless steels (ASSs). In this study, an advanced duplex stainless steel (DSS) with a composition of Fe-19Cr-4Ni-2.5Mo-4.5Mn (ADCS) was developed and its performance was compared with that of commercial ASS and DSS alloys. The chemical composition of ADCS was determined to obtain greater pitting and CISCC resistance as well as a proper combination of strength and ductility. Then, the thermomechanical processing (TMP) condition was applied, which resulted in higher strength than ASSs (304L SS and 316L SS) and better ductility than DSSs (2101 LDSS and 2205 DSS). The potentiodynamic polarization and electrochemical impedance spectra (EIS) results represented the better pitting corrosion resistance of ADCS compared to 304L SS and 316L SS by forming a better passive layer. The CISCC tests using four-point loaded specimens showed that cracks were initiated at 24 h for 304L SS and 144 h for 316L SS, while crack was not found until 1008 h for ADCS. Overall, the developed alloy, ADCS, showed better combination of CISCC resistance and mechanical properties as dry storage canister materials than commercial alloys.

Chemical Composition Characteristics of Dustfall in Nakdong River Area (낙동강 하류역 강하먼지의 화학적 조성 특성)

  • Jeon, Byung-Il;Hwang, Yong-Sik
    • Journal of the Korean earth science society
    • /
    • v.25 no.6
    • /
    • pp.428-442
    • /
    • 2004
  • Dustfall samples were collected by the modified American dust jar (bulk type) at 5 sampling sites in the Nakdong river area from lune 2002 to May 2003. Nineteen chemical species (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Si, V, Zn, $Cl^-$, $NO_3^-$, $SO_4^{2-}$, and $NH_4^+$) were analyzed via the combination of ICP/AES, AAS, IC and UV. The purposes of this study were to qualitatively evaluate the chemical composition of dustfalls by examining their regional and seasonal distribution patterns. Computation of the enrichment factor showed that well-defined anthropogenic sources, particularly in Pb were found in the order Gamjeondong (industrial area), Wondong, Silla University, Samrangiin and Mulgum. The seasonal mean of soil contribution showed its highest value (16.3%) during the winter with an annual mean of 11.2%. The concentration ratio of [$SO_4^{2-}/NO_3^-$] was found to be highest (5.12) during the winter, while the lowest ratio value (3.30) was seen during the all. fall, Also regional equivalent ratios of [$SO_4^{2-}/NO_3^-$] were found in the order: Silla University (6.78), Gamjeondong (4.98), Mulgum (3.95), Wondong (3.85), and Samrangjin (2.87). Seasonal distribution of water soluble components for total dustfall were found in the order: spring (71.6%), summer (61.2%), fall (49.2%) and winter (48.6%) with a mean ratio of 57.6%. Regional contribution of sea salts of water soluble ions were found in the order: Silla university (34.5%), Gamjeondong (28.3%), Wondong (17.3%), Samrangiin (17.2%) and Mulgum (13.8%), the total mean contribution rate was 22.1%. As for the chemical composition of dustftll on the lower Nakdong river, there is a decreased influence of sea salt and artificial anthropogenic sources and increased influence of soil particle inland. Also, the total amount of deposition on the lower Nakdong river has decreased, with the river's surface serving as a confounding factor in resuspending dusts.

Geochemical Study of the Cretaceous Granitic Rocks in Southwestern Part of the Korean Peninsula (한반도 남서부지역에 분포하는 백악기 화강암류에 대한 지화학적 연구)

  • Wee Soo Meen;Park Se Mi;Choi Seon Cyu;Ryu In Chang
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.113-127
    • /
    • 2005
  • Cretaceous intrusive and extrusive rocks are widely distributed in the southwestern part of the Korean peninsula, possibly the result of intensive magmatism which occurred in response to subduction of the western proto-Pacific plate beneath the north-eastern part of the Eurasian plate. Geochemical and petrological study on the Cretaceous granitic rocks were carried out in order to constrain the petrogenesis of the granitic magma and to establish the paleotectonic environment of the area. Whole rock chemical data of the granitic rocks from the study area indicate that the all the rocks have characteristics of calc-alkaline series in the subalkaline field. The overall geochemical features show systematic variations in each granitic body, but the source materials of each granitic body are thought to have been different in their chemical composition. Higher values of $Fe_2O_3/FeO$ of the granitic rocks in the western area suggest that the granitoids had been solidified under highly oxidizing environment. The granitic bodies in the eastern area also show higher contents of Li, Ni, Co, Sr, Cr, Sc and lower Rb and Nb compared to the those of the western area. Chondrite normalized REE patterns show generally enriched LREE and strong negative Eu anomalies in the western wet while slight to flat Eu anomalies in the east-ern area. The REE and $(La/Lu)_{CN}$ of the granites are $60{\~}499ppm$ and $8.9{\~}66$ correspond to the range of the continental margin granite. On the ANK vs. ACNK and tectonic discrimination diagrams, parental magma type of the granites corresponds to I-type, VAG and syn-collision granite. Interpretations of the chemical characteristics of the granitic rocks favor their emplacement in a compressional tectonic regime at continental margin during the subduction of proto-Pacific plate.

Effect of Freshwater Discharge on the Seawater Quality (Nutrients, Organic Materials and Trace Metals) in Cheonsu Bay (여름철 천수만 해수에서 담수 대량 방류에 따른 영양염, 유기물 및 미량금속의 변화)

  • LEE, JI-YOON;CHOI, MAN-SIK;SONG, YUNHO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.4
    • /
    • pp.519-534
    • /
    • 2019
  • When the fresh water from the artificial lakes (Ganwolho and Bunamho) were discharged to Cheonsu Bay in summer to prevent the flood over the reclaimed farmland near the lakes, the impact on water qualities (nutrients, organic matters, trace metals) within the bay was investigated through four surveys (June, July, August and October, 2011). Dissolved inorganic nitrogen (DIN) increased about as much as 3-4 times over the whole water column when the freshwater was discharged. And the main species composition of DIN changed from ammonia to nitrate. Dissolved inorganic phosphorus (DIP) decreased as much as 2 times in surface waters, but increased as much as 1.5 times in deep waters, and also silicate concentrations increased as much as 3-4 times in deep waters of the inner bay. The N/P ratios in Chunsu bay seawaters were much higher (2 to 7 times) than the Redfield ratio when the freshwaters were discharged, which indicated the phosphorus limiting in the phytoplankton growth. Dissolved organic carbon (DOC) and nitrogen (DON) increased as much as about 2 times. In addition, particulate organic matters (POC, PON, POP, Bio-Si) increased as much as above 2 times in the surface waters of the inner bay. Trace metals (Fe, Mn, Co, Ni, Cu) increased in the surface waters of the inner bay, but dissolved Cd concentrations decreased as much as 2 times. Therefore, when the contaminated fresh waters from the artificial lakes were discharged into the bay, nutrients, organic matters and trace metals generally increased compared to normal period. Since the phytoplankton bloom occurred in the surface waters of the inner bay, dissolved oxygens at the surface waters were oversaturated and hence hypoxic in the deep waters. Highly enriched nutrients concentrations were found in deep waters of the inner bay, which was accompanied with the hypoxic condition. Finally, the water quality in the inner bay of the Chunsu bay was deteriorated from less than grade 3 in normal periods to grade 5 when the freshwaters from the artificial lakes were discharged in summer.