• Title/Summary/Keyword: Ni-Cu alloy

Search Result 317, Processing Time 0.023 seconds

A Study on the Corrosion of Cu-Ni Alloy in Chlorinated Seawater for Marine Applications (잔류 염소가 포함된 해수에서의 Cu-Ni 합금의 부식 거동 연구)

  • Jung, Geunsu;Yoon, Byoung Young;Lim, Chae Seon
    • Corrosion Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.176-182
    • /
    • 2018
  • Corrosion of the Cu alloy with 10wt% Ni in stagnant seawater with residual free chlorine was investigated. Despite that fact that Cu alloys are widely used for seawater applications due to their stubborn resistance to chloride attack, not much is known as to how the residual free chlorine in seawater affects corrosion of Cu and its alloys. In this work, immersion tests were conducted in the presence of different levels of chlorine for 90-10 Cu-Ni samples, one of the most frequently used Cu alloys for seawater application, mostly in shipbuilding. The results revealed no evidence for accelerated corrosion of the Cu-Ni alloy even in the presence of 5 ppm residual chlorine in seawater, signifying that the Cu-Ni alloy can be more tolerant to residual chlorine that has been commonly cited by the shipbuilding industry. However, comparison of polarization behavior of the alloy samples in the presence of different electrolytes with different concentrations of residual chlorine suggests that higher concentration of chlorine could increase the corrosion rate of the Cu-Ni alloy. Furthermore, it is suggested that microorganisms in the seawater could increase the corrosion rate of the Cu-Ni alloy by encouraging exfoliation of the corrosion product off the metal surface.

Microstructural Evolution in CuCrFeNi, CuCrFeNiMn, and CuCrFeNiMnAl High Entropy Alloys

  • Hyun, Jae Ik;Kong, Kyeong Ho;Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.45 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • In the present study, microstructural evolution in CuCrFeNi, CuCrFeNiMn, and CuCrFeNiMnAl alloys has been investigated. The as-cast CuCrFeNi alloy consists of a single fcc phase with the lattice parameter of 0.358 nm, while the as-cast CuCrFeNiMn alloy consists of (bcc+fcc1+fcc2) phases with lattice parameters of 0.287 nm, 0.366 nm, and 0.361 nm. The heat treatment of the cast CuCrFeNiMn alloy results in the different type of microstructure depending on the heat treatment temperature. At $900^{\circ}C$ a new thermodynamically stable phase appears instead of the bcc solid solution phase, while at $1,000^{\circ}C$, the heat treated microstructure is almost same as that in the as-cast state. The addition of Al in CuCrFeNiMn alloy changes the constituent phases from (fcc1+fcc2+bcc) to (bcc1+bcc2).

Microstructural Feature and Aging Characteristics of Spray-Formed Cu-5Ni-10Sn Alloy (가스분무성형 Cu-5Ni-10Sn 합금의 미세조직 및 시효강화)

  • Roh, Dae-Gyun;Kang, Hee-Soo;Baik, Kyeong-Ho
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.317-321
    • /
    • 2012
  • In this study, Cu-5Ni-10Sn(wt%) spinodal alloy was manufactured by gas atomization spray forming, and the microstructural features and mechanical properties of Cu-5Ni-10Sn alloy have been investigated during homogenization, cold working and age-hardening. The spray formed Cu-5Ni-10Sn alloy consisted of an equiaxed microstructure with a mixture of solid solution ${\alpha}$-(CuNiSn) grains and lamellar-structure grains. Homogenization at $800^{\circ}C$ and subsequent rapid quenching formed a uniform solid solution ${\alpha}$-(CuNiSn) phase. Direct aging at $350^{\circ}C$ from the homogenized Cu-5Ni-10Sn alloy promoted the precipitation of finely distributed ${\gamma}$' or ${\gamma}-(Cu,Ni)_3Sn$ phase throughout the matrix, resulting in a significant increase in microhardness and tensile strength. Cold working prior to aging was effective in strengthening Cu-5Ni-10Sn alloy, which gave rise to a maximum tensile strength of 1165 MPa. Subsequent aging treatment slightly reduced the tensile strength to 1000-1100 MPa due to annealing effects.

Interfacial Reactions of Sn-Ag-Cu solder on Ni-xCu alloy UBMs (Ni-xCu 합금 UBM과 Sn-Ag계 솔더 간의 계면 반응 연구)

  • Han Hun;Yu Jin;Lee Taek Yeong
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.84-87
    • /
    • 2003
  • Since Pb-free solder alloys have been used extensively in microelectronic packaging industry, the interaction between UBM (Under Bump Metallurgy) and solder is a critical issue because IMC (Intermetallic Compound) at the interface is critical for the adhesion of mechanical and the electrical contact for flip chip bonding. IMC growth must be fast during the reflow process to form stable IMC. Too fast IMC growth, however, is undesirable because it causes the dewetting of UBM and the unstable mechanical stability of thick IMC. UP to now. Ni and Cu are the most popular UBMs because electroplating is lower cost process than thin film deposition in vacuum for Al/Ni(V)/Cu or phased Cr-Cu. The consumption rate and the growth rate of IMC on Ni are lower than those of Cu. In contrast, the wetting of solder bumps on Cu is better than Ni. In addition, the residual stress of Cu is lower than that of Ni. Therefore, the alloy of Cu and Ni could be used as optimum UBM with both advantages of Ni and Cu. In this paper, the interfacial reactions of Sn-3.5Ag-0.7Cu solder on Ni-xCu alloy UBMs were investigated. The UBMs of Ni-Cu alloy were made on Si wafer. Thin Cr film and Cu film were used as adhesion layer and electroplating seed layer, respectively. And then, the solderable layer, Ni-Cu alloy, was deposited on the seed layer by electroplating. The UBM consumption rate and intermetallic growth on Ni-Cu alloy were studied as a function of time and Cu contents. And the IMCs between solder and UBM were analyzed with SEM, EDS, and TEM.

  • PDF

Effect of Thermomechanical Treatment on the Phase Transformation and Superelasticity in Ti-Ni-Cu Shape Memory Alloy (Ti-Ni-Cu 형상기억합금의 상변태 및 초탄성에 미치는 가공열처리의 영향)

  • Lee, O.Y.;Park, Y.K.;Chun, B.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.4
    • /
    • pp.253-261
    • /
    • 1994
  • Transformation behavior and superelastic behavior of Ti-Ni-Cu alloys with various Cu content has been investigated by means of electrical resistivity measurement, X-ray diffraction, tensile test and transmission electron microscopy. Two types of heat treatment are given to the specimens: i) Solutions treatment. ii) thermo-mechanical treatment. The transformation sequence in solution treated Ti-Ni-Cu Alloys substituted by Cu for Ni up to 5at.% occurs to $B2{\rightleftarrows}B19^{\prime}$ and it proceeds in two stages by addition of 10at.%Cu, i. e, $B2{\rightleftarrows}B19{\rightleftarrows}B19^{\prime}$. Also, it has been found that Ti-30Ni-20Cu alloy transformed in one stage : $B2{\rightleftarrows}B19$. The thermo-mechanically treated Ti-47Ni-3Cu alloy transformed in two stages: B2${\rightleftarrows}$rhomboheral phase${\rightleftarrows}B19^{\prime}$, while transformation sequence in Ti-45Ni-5Cu and Ti-40Ni-10Cu alloy transformed as same as solution treated specimens. The critical stress for inducing slip deformation in solution treated and thermo-mechanically treated Ti-40Ni-10Cu alloy is about 90MPa and 320Mpa respectively.

  • PDF

Phase Changes and Microstructural Properties of Ti Alloy Powders Produced by using Attrition Milling Method (어트리션 밀링법으로 제조된 티타늄합금의 상변화 및 미세조직특성)

  • Cha, Sung-Soo
    • Journal of Technologic Dentistry
    • /
    • v.23 no.1
    • /
    • pp.9-19
    • /
    • 2001
  • Microstructure and phase transformation of Ti-Ni-Cu alloy powders produced by using attrition milling method were studied. Mixed powders of Ti-(50-X)Ni-XCu ($X=0{\sim}20$ at%) in composition range were mechanically alloyed for maximum 20 hours by using SUS 1/4" ball in argon atmosphere. Ball to powder ratio was 50: 1 and impeller speed was 350rpm. Mechanically alloyed with attrition millimg method. powder was heat treated at the temperature up to $850^{\circ}C$ for 1 hour in the $10^{-6}$ torr vacuum. Ti-Ni-Cu alloy powders have been fabricated by attrition milling method. and then phase transformation behaviours and microstructual properties of the alloy powders were investigated to assist in improving the the high damping capacity of Ti-Ni-Cu shape memory alloy powders. The results obtained are as follows: 1. After heat treating of fully mechanically alloyed powder at $850^{\circ}C$ for 1hour. most of the B2 and B 19' phases was formed and $TiNi_3$ were coexisted. 2. The B 19' martensite were formed in Ti-Ni-Cu alloy powders whose Cu-content is less than 5a/o. where as the B19 martensite in those whose Cu-content is more than 10at%. 3. The powders of as-milled Ti-Ni-Cu alloys whose Cu-contents is less than 5at% are amorphous. whereas those of as-milled Ti-Ni-Cu alloys whose Cu-content is more than 10at% are crystalline. This means that Cu addition tends to suppress amorphization of Ti-Ni alloy powders.

  • PDF

Cu-based Bulk Amorphous Alloys in the Cu-Zr-Ti-Ni-Pd System (Cu-Zr-Ti-Ni-Pd계 비정질 벌크합금의 형성과 성질)

  • Kim, Sung-Gyoo;Bae, Cha-Hurn
    • Journal of Korea Foundry Society
    • /
    • v.22 no.6
    • /
    • pp.304-308
    • /
    • 2002
  • The new Cu-Zr-Ti-Ni-Pd amorphous alloy system has been introduced and manufactured using melt-spinning and Cu-mold die casting methods. Amorphous formability, the supercooled liquid region before crystallization and mechanical properties of the alloys were examined. The reduced glass transition temperature(Trg = Tg/Tm) and the supercooled liquid region(${\Delta}$Tx = Tx-Tg) of $Cu_{49}Zr_{30}Ti_{10}Ni_5Pb_6$ alloy were 0.620 and 57 K respectively. $Cu_{49}Zr_{30}Ti_{10}Ni_5Pb_6$ amorphous alloy was produced in the rod shape with 2mm diameter using the Cu-mold die casting. The hardness value of the amorphous bulk alloy was 432 DPN.

PHASE TRANSITIONS AND ELECTROCHEMICAL CORROSION BEHAVIORS OF Ti50Ni50-xCux SHAPE MEMORY ALLOYS FOR METALLIC BIOMATERIALS

  • KWANGMIN LEE;SANGHYUN RHO
    • Archives of Metallurgy and Materials
    • /
    • v.65 no.4
    • /
    • pp.1303-1306
    • /
    • 2020
  • TiNi alloys have excellent shape memory properties and corrosion resistance as well as high biocompatibility. This study investigated the effects of copper addition on the phase transitions and electrochemical corrosion behaviors of Ti50Ni50-xCux alloys. TiNi, Ti50Ni47Cu3, Ti50Ni44Cu6, and Ti50Ni41Cu9 alloys were prepared using vacuum arc remelting followed by 4 h homogenization at 950℃. Differential scanning calorimetry and X-ray diffraction analyses were conducted. The corrosion behaviors of the alloys were evaluated using potentiodynamic polarization test in Hank's balanced salt solution at a temperature of 36.5 ± 1℃. The TiNi alloy showed phase transitions from the cubic B2 phase to the monoclinic B19' phase when the alloy was thermally cycled. The addition of copper to the TiNi alloy played a major role in stabilizing the orthorhombic B19 phases during the phase transitions of Ti50Ni50-xCux alloys. The shifts in the corrosion potential toward the positive zone and the low corrosion current density were affected by the amount of Cu added. The corrosion resistance of the TiNi alloy increased with increasing copper content.

The Properties and Processing of Bismuth and Indium Added Sn-Cu-Ni Solder Alloy System (Bi, In을 함유한 Sn-Cu-Ni계 솔더 합금 제조와 물성)

  • 박종원;최정철;최승철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.1
    • /
    • pp.21-28
    • /
    • 2002
  • Bismuth and Indium added Sn-Cu-Ni solder alloy was investigated for a new lead free solder. The thermal, electrical and mechanical properties were characterized for the Sn-0.7%(Cu+Ni) solder alloy by adding 2~5% Bi and 2~ 10% In. The melting point of solder alloy was in range of 200 to $222^{\circ}C$ and the mushy zone was in range of 20 to $37^{\circ}C$. This alloys could be adapted to middle and high temperature solder materials. A new solder alloy composition. Sn-0.7%(Cu+Ni) -3.5%Bi-2%In is very promising with high performance and effective cost. The melting point was $220^{\circ}C$, the mushy zone range was $25^{\circ}C$, and mechanical, electrical and wetting properties were competitive with those of other lead-free solder except the lower elongation value.

  • PDF

Tribological Properties of Cu-Ni Alloy Nanopowders Synthesized by Pulsed Wire Evaporation (PWE) Method (전기 폭발법에 의해 제조된 Cu-Ni 나노 분말의 윤활성 향상)

  • Oh J.S.;Park J.H.;Kim W.W.;Rhee C.K.
    • Journal of Powder Materials
    • /
    • v.11 no.5
    • /
    • pp.376-382
    • /
    • 2004
  • Nanoscale Cu-Ni alloy nanopowders have been produced by a pulsed wire evaporation method in an inert gas. The effect of Cu-Ni alloy nanopowders as additives to motor oil on the tribological properties was studied at room temperature. The worn surfaces were characterized by Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS). Cu-Ni alloy nanopowders as additives lowered coefficient of friction and wear rate. It was found that a copper containing layer on the worn surface was formed, and deposited layers of the metal cladding acted as lubricant on the worn surface, reducing the friction coefficient. It was clearly demonstrated that Cu-Ni alloy nanopowders as additives are able to restore the worn surface and to preserve the friction surfaces from wear.