• Title/Summary/Keyword: Ni-CNTs nanocomposites

Search Result 4, Processing Time 0.016 seconds

Enhanced binding between metals and CNT surface mediated by oxygen

  • Park, Mi-Na;Kim, Byeong-Hyeon;Lee, Gwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.61-61
    • /
    • 2010
  • In the present work, we present the optimized the hybrid structures of carbon nanotubes (CNTs) and metal nanocomposites including Cu, Al, Co and Ni using the first principle calculations based on the density functional theory. Introduction of CNTs into a metal matrix has been considered to improve the mechanical properties of the metal matrix. However, the binding energy between metals and pristine CNTs wall is known to be so small that the interfacial slip between CNTs and the matrix occurs at a relatively low external stress. The application of defective or functionalized CNTs has thus attracted great attention to enhance the interfacial strength of CNT/metal nanocomposites. Herein, we design the various hybrid structures of the single wall CNT/metal complexes and characterize the interaction between single wall CNTs and various metals such as Cu, Al, Co or Ni. First, differences in the binding energies or electronic structures of the CNT/metal complexes with the topological defects, such as the Stone-Wales and vacancy, are compared. Second, the characteristics of functionalized CNTs with various surface functional groups, such as -O, -COOH, -OH interacting with metals are investigated.We found that the binding energy can be enhanced by the surface functional group including oxygen since the oxygen atom can mediate and reinforce the interaction between carbon and metal. The binding energy is also greatly increased when it is absorbed on the defects of CNTs. These results strongly support the recent experimental work which suggested the oxygen on the interface playing an important role in the excellent mechanical properties of the CNT-Cu composite[1].

  • PDF

Fabrication and Mechanical Characteristics of Bulk Nickel/Carbon Nanotube Nanocomposites via the Electrical Explosion of Wire in Liquid and Spark Plasma Sintering Method

  • Minh, Thuyet-Nguyen;Hong, Hai-Nguyen;Kim, Won Joo;Kim, Ho Yoon;Kim, Jin-Chun
    • Journal of Powder Materials
    • /
    • v.23 no.3
    • /
    • pp.213-220
    • /
    • 2016
  • In this study, bulk nickel-carbon nanotube (CNT) nanocomposites are synthesized by a novel method which includes a combination of ultrasonication, electrical explosion of wire in liquid and spark plasma sintering. The mechanical characteristics of the bulk Ni-CNT composites synthesized with CNT contents of 0.7, 1, 3 and 5 wt.% are investigated. X-ray diffraction, optical microscopy and field emission scanning electron microscopy techniques are used to observe the different phases, morphologies and structures of the composite powders as well as the sintered samples. The obtained results reveal that the as-synthesized composite exhibits substantial enhancement in the microhardness and values more than 140 HV are observed. However an empirical reinforcement limit of 3 wt.% is determined for the CNT content, beyond which, there is no significant improvement in the mechanical properties.

Preparation of Nickel Coated-carbon Nanotube/Zinc Oxide Nanocomposites and Their Antimicrobial and Mechanical Properties (니켈 코팅된 탄소나노튜브/산화아연 나노복합소재의 제조와 항균 및 기계적 특성 분석)

  • Kim, Hyeon-Hye;Han, Woong;An, Kay-Hyeok;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.27 no.5
    • /
    • pp.502-507
    • /
    • 2016
  • This study was conducted to develop novel antimicrobial nano-composites, with the aim of fully utilizing antimicrobial properties of multi-walled carbon nanotubes (MWCNTs), nickel (Ni) and zinc oxide (ZnO). Ni coated-MWCNTs (Ni-CNT) were prepared and evaluated for their potential application as an antimicrobial material for inactivating bacteria. Field emission scanning electron microscopy (FE-SEM), and X-ray energy dispersive spectroscopy (EDS) were used to characterize the Ni coating and morphology of Ni-CNT. Staphylococcus aureus (S. aureus) and Escherichia coil (E. coil) were employed as the target bacterium on antimicrobial activities. Comparing with the nitric acid treated MWCNTs and Ni-CNT which have been previously reported to possess antimicrobial activity towards S. aureus and E. coil, Ni-CNT/ZnO exhibited a stronger antimicrobial ability. The nickel coating was confirmed to play an important role in the bactericidal action of Ni-CNTs/ZnO composites. Also, the addition of ZnO to the developed nanocomposite is suggested to improve the antimicrobial property.

Fabrication and Analysis of a Free-Standing Carbon Nanotube-Metal Hybrid Nanostructure (개별 수직성장된 나노튜브와 금속의 복합 구조체 제작 및 분석)

  • Chang, Won-Seok;Hwang, Jun-Yeon;Han, Chang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.25-29
    • /
    • 2012
  • The properties of carbon nanotube-metal hybrid nanostructures are critically dependent on the structure and chemistry of the metal-carbon nanotube interface. In this study, the interface between nickel and multi-walled carbon nanotubes (CNTs) has been investigated using physical vapor-deposited (sputter-deposited) nickel onto the surface of freestanding carbon nanotube arrays processed by nano-imprint lithography (NIL). These interfaces have been characterized by transmission electron microscopy and 3D atom probe tomography. In the nickel nanocrystals growing on the CNT surface, a metastable hexagonal $Ni_3C$-types phase appears to be stabilized. The structural stability of the nickel-CNT interface is also discussed and related to potential implications for the properties of these nanocomposites.