• Title/Summary/Keyword: Ni-20 Cr

Search Result 319, Processing Time 0.021 seconds

Adsorption Characteristics of Ni2+, Zn2+ and Cr3+ by Zeolite Synthesized from Jeju Scoria (제주 스코리아로부터 합성한 제올라이트에 의한 Ni2+, Zn2+ 및 Cr3+의 흡착 특성)

  • Kim, Jung-Tae;Lee, Chang-Han;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.29 no.7
    • /
    • pp.739-748
    • /
    • 2020
  • The characteristics of heavy metal ion (Ni2+, Zn2+, and Cr3+) adsorption by zeolite synthesized from Jeju scoria using the fusion and hydrothermal method, were studied. The synthetic zeolite was identified as a Na-A zeolite by X-ray diffraction analysis and scanning electron microscopy images. The equilibrium of heavy metal ion adsorption by synthetic zeolite was reached within 60 min for Ni2+ and Zn2+, and 90 min for Cr3+. The uptake of heavy metal ions increased with increasing pH in the range of pH 3-6 and the uptake decreased in the order of Cr3+ > Zn2+ > Ni2+. For initial heavy metal concentrations of 20-250 mg/L at nonadjusted pH, the adsoption of heavy metal ions was well described by the pseudo second-order kinetic model and was well fitted by the Langmuir isotherm model. The maximum uptake of heavy metal ions obtained from the Langmuir model, decreased in the order of Zn2+ > Ni2+ > Cr3+, differing from the effect of pH on the uptake, which was mainly based on the different pH of the solutions.

Reduction of eco-toxicity risk of heavy metals in the rotary drum composting of water hyacinth: Waste lime application and mechanisms

  • Singh, Jiwan;Kalamdhad, Ajay S.;Lee, Byeong-Kyu
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.212-222
    • /
    • 2015
  • Experiments were conducted on the immobilization of eight heavy metals (HMs) (Zn, Cu, Mn, Fe, Ni, Pb, Cd, and Cr) during 20-day rotary drum composting of water hyacinth. The Tessier sequential extraction procedure was used to investigate the fractionation of HMs. The eco-toxicity risk of HMs was assessed by risk assessment code (RAC). In the results, the bioavailability factor (BAF) for different HMs presented in the following order: Mn > Zn = Fe > Cu > Cr > Cd = Pb > Ni. The total concentration of Pb was higher than that of Zn, Cu, Mn, Cd and Cr; however, its BAF was the lowest among these HMs. These results confirmed that the eco-toxicity of HMs depends on bioavailable fractions rather than on the total concentration. The greatest reduction in bioavailability and eco-toxicity risk of HMs occurred in lime 1% and 2% as compared to control and lime 3%. The eco-toxicity risk of Fe, Ni, Pb, Cd and Cr was reduced from low risk to zero risk by rotary drum composting. These studies demonstrated the high efficiency of the rotary drum for degrading compost materials and for reducing the bioavailability and eco-toxicity risk of HMs during the composting process.

Effect of Al2O3 Inter-Layer Grown on FeCrAl Alloy Foam to Improve the Dispersion and Stability of NiO Catalysts (NiO 촉매의 분산성 및 안정성 향상을 위하여 FeCrAl 합금 폼 위에 성장된 Al2O3 Inter-Layer 효과)

  • Lee, Yu-Jin;Koo, Bon-Ryul;Baek, Seong-Ho;Park, Man-Ho;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.391-397
    • /
    • 2015
  • NiO catalysts/$Al_2O_3$/FeCrAl alloy foam for hydrogen production was prepared using atomic layer deposition (ALD) and subsequent dip-coating methods. FeCrAl alloy foam and $Al_2O_3$ inter-layer were used as catalyst supports. To improve the dispersion and stability of NiO catalysts, an $Al_2O_3$ inter-layer was introduced and their thickness was systematically controlled to 0, 20, 50 and 80 nm using an ALD technique. The structural, chemical bonding and morphological properties (including dispersion) of the NiO catalysts/$Al_2O_3$/FeCrAl alloy foam were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy and scanning electron microscopy-energy dispersive spectroscopy. In particular, to evaluate the stability of the NiO catalysts grown on $Al_2O_3$/FeCrAl alloy foam, chronoamperometry tests were performed and then the ingredient amounts of electrolytes were analyzed via inductively coupled plasma spectrometer. We found that the introduction of $Al_2O_3$ inter-layer improved the dispersion and stability of the NiO catalysts on the supports. Thus, when an $Al_2O_3$ inter-layer with a 80 nm thickness was grown between the FeCrAl alloy foam and the NiO catalysts, it indicated improved dispersion and stability of the NiO catalysts compared to the other samples. The performance improvement can be explained by optimum thickness of $Al_2O_3$ inter-layer resulting from the role of a passivation layer.

Giant Magnetoresistance of Antiferromagnetic Cr-Al based Multilayer Spin-Valve with Anti-Corrosion and Thermal Stability (내열 내식용 Cr-Al반강자성계 스핀밸브막의 거대자기저항 효과)

  • 김병수;이성훈;이찬규
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.6
    • /
    • pp.362-368
    • /
    • 1998
  • The magnetic properties, thermal stability and anti-corrosion properties of $Cr_86Al_14$ spin valves multilayers were studied. It was found that the magnetic properties of $Cr_86Al_14$ spin valves depend on the thickness of antiferromagnetic, ferromagnetic and non-ferromagnetic layers. Exchange coupled field ($H_{ex}$) and magnetoresistance ratio (%) showed the largest value of 20 Oe, 2 % in $glass/Cr_{86}Al_{14}(600 $\AA$)/Ni_{81}Fe_{19}(50$\AA$)/Cu(40 $\AA$)/Ni_{81}Fe_{19}(40 $\AA$)$ spin valves. The $H_{ex}$ MR ratios (%) of CrAl and FeMn spin valves were decreased with increasing annealing temperatures and were lost at 150 $^{\circ}C$, 250 $^{\circ}C$ respectively. Based on these result, it was elucidated that CrAl is more thermally stable than FeMn. It was also shown that there was no change of $H_{ex}$ MR ratios in CrAl, while FeMn was changed and lost 15 days later in corrosion resistance test under 35 $^{\circ}C$, 90 % humidity condition. FeMn was found to be pitted and peeled off 15 days later by SEM micrographic analysis.

  • PDF

Improved Mechanical Properties of Cross Roll Rolled Ni-Cr Alloy (교차롤압연된 Ni-Cr 합금의 기계적 특성 발달)

  • Song, Kuk-Hyun;Kim, Dae-Keun;Son, Hyun-Taek;Lee, Hae-Jin;Kim, Han-Sol;Kim, Won-Yong
    • Korean Journal of Materials Research
    • /
    • v.21 no.10
    • /
    • pp.556-562
    • /
    • 2011
  • We carried out this study to evaluate the grain refining in and the mechanical properties of alloys that undergo severe plastic deformation (SPD). Conventional rolling (CR) and cross-roll rolling (CRR) as SPD methods were used with Ni-20Cr alloy as the experimental material. The materials were cold rolled to a thickness reduction of 90% and subsequently annealed at $700^{\circ}C$ for 30 min to obtain a fully recrystallized microstructure. For the annealed materials after the cold rolling, electron back-scattered diffraction (EBSD) analysis was carried out to investigate the grain boundary characteristic distributions (GBCDs). The CRR process was more effective when used to develop the grain refinement relative to the CR process; as a result, the grain size was refined from $70{\mu}m$ in the initial material to $4.2{\mu}m$ (CR) and $2.4{\mu}m$ (CRR). These grain refinements have a direct effect on improving the mechanical properties; in this case, the microhardness, yield and tensile strength showed significant increases compared to the initial material. In particular, the CRR-processed material showed more effective values relative to the CR-processed materials. The different texture distributions in the CR (001//ND) and CRR (111//ND) were likely the cause of the increase in the mechanical properties. These findings suggest that CRR can result in materials with a smaller grain size, improved texture development and improved mechanical properties after recrystallization by a subsequent annealing process.

Tribological Behavior Analysis of WC-Ni-Cr + Cr3C2 and WC-Ni-Cr + YSZ Coatings Sprayed by HVOF (고속 화염 용사법으로 제조된 WC계 Cr3C2 코팅과 WC계 YSZ 코팅의 마찰 및 마모 거동 연구)

  • Tae-Jun Park;Gye-Won Lee ;Yoon-Suk Oh
    • Journal of Powder Materials
    • /
    • v.30 no.5
    • /
    • pp.415-423
    • /
    • 2023
  • With the increasing attention to environmental pollution caused by particulate matter globally, the automotive industry has also become increasingly interested in particulate matter, especially particulate matter generated by automobile brake systems. Here, we designed a coating composition and analyzed its mechanical properties to reduce particulate matter generated by brake systems during braking of vehicles. We designed a composition to check the mechanical properties change by adding Cr3C2 and YSZ to the WC-Ni-Cr composite composition. Based on the designed composition, coating samples were manufactured, and the coating properties were analyzed by Vickers hardness and ball-on-disk tests. As a result of the experiments, we found that the hardness and friction coefficient of the coating increased as the amount of Cr3C2 added decreased. Furthermore, we found that the hardness of the coating layer decreased when YSZ was added at 20vol%, but the friction coefficient was higher than the composition with Cr3C2 addition.

Effect of Room Temperature Prestrain on Creep Life of Austenitic 25Cr-20Ni Stainless Steels (오스테나이트계 25Cr-20Ni 스테인리스강의 실온예변형이 크리프 수명에 미치는 영향)

  • Park, In-Duck;Ahn, Seok-Hwan;Nam, Ki-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.453-459
    • /
    • 2004
  • 25Cr-20Ni series strainless steels have an excellent high temperature strength high oxidation and high corrosion resistance. However, further improvement can be expected of creep strength by work hardening prior creep. In the present study, the effect of prestraining at room temperature on the creep behavior of a Class M(STS310S) and a Class A(STS310J1TB) alloy containing precipitates have been examined. Prestaining was carried out at room temperature and range of prestrain was 0.5-2.5 % at STS310J1TB and 2.0-7.0% at STS310S. Creep behavior and creep rate of pre-strained specimens were compared with that of virgin specimens. Room temperature prestraining produced the creep life that is longer than that of a virgin specimen both for STS310J1TB and STS310S when creep test was carried out at the temperature lower than recrystallization temperature. The reason for this improvement of creep life was ascribable to the interaction between dislocations and precipitates in addition to the dislocation-dislocation interaction in STS310J1TB and the dislocation-dislocation interaction in STS310S. The beneficial effect of prestraining in STS310J1TB was larger than that of STS310S.

Effect of Cold Working on the Tensile Properties of Fe-20Mn-12Cr-3Ni-3Si Alloy (Fe-20Mn-12Cr-3Ni-3Si 합금의 인장성질에 미치는 냉간가공의 영향)

  • Jung, Jong-Min;Kim, Kwon-Hoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.3
    • /
    • pp.116-121
    • /
    • 2021
  • This study was carried out to investigate the effect of transformation induced martensite on the tensile properties of Fe-20Mn-12Cr-3Ni-3Si alloy. α' and ε-martensite were formed by cold rolling, and these martensite were formed with according to the specific direction, surface relief and partially intersection. With an increasing degree of cold rolling, amount of α'-martensite was slowly increased, whereas amount of ε-martensite was rapidly increased. Volume fraction of ε-martensite formed by cold working was large than α'-martensite. Tensile strength was rapidly increase and elongation was rapidly decreased with an increasing of degree of cold rolling. This means that tensile strengh and elongation was greatly influenced by the volume fraction of ε-martensite formed by cold rolling then α'-martensite.

Effect of Thermo-mechanical Treatment on the Tensile Properties of Fe-20Mn-12Cr-3Ni-3Si Damping Alloy (Fe-20Mn-12Cr-3Ni-3Si 합금의 인장성질에 미치는 가공열처리의 영향)

  • Han, H.S.;Kang, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.2
    • /
    • pp.61-67
    • /
    • 2019
  • This study was carried out to investigate the effect of thermo-mechanical treatment on the tensile properties of Fe-20Mn-12Cr-3Ni-3Si alloy with deformation induced martensite transformation. ${\alpha}^{\prime}$ and ${\varepsilon}$-martensite, dislocation, stacking fault were formed, and grain size was refined by thermo-mechanical treatment. With the increasing cycle number of thermo-mechanical treatment, volume fraction of ${\varepsilon}$ and ${\alpha}^{\prime}$-martensite, dislocation, stacking fault were increased, and grain size decreased. In 5-cycle number thermo-mechanical treated specimens, more than 10% of the volume fraction of ${\varepsilon}$-martensite and less than 3% of the volume fraction of ${\alpha}^{\prime}$-martensite were attained. Tensile strength was increased and elongation was decreased with the increasing cycle number of thermo-mechanical treatment. Tensile properties of thermo-mechanical treated alloy with deformation induced martensite transformation was affected to formation of martensite by thermo-mechanical treatment, but was large affected to increasing of dislocation and grain refining.

Corrosion Behaviors of Neutron-Irradiated Reactor Pressure Vessel Steels with Various Nickel and Chromium Contents (Ni과 Cr 함량이 다른 원자로 압력용기용 강의 중성자 조사 후 내식성 평가)

  • Choi, Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.6
    • /
    • pp.293-297
    • /
    • 2019
  • Quasi-nano-hardness and corrosion behaviors of neutron-irradiated reactor pressure vessel (RPV) steels such as 15Ch2MFA (Ni<0.4, 2.520 n/㎠ (En>1.0 MeV) for 32 days. Quasi-nano-hardnesses of the 15Ch2MFA and 15Cr2NHFA steels were 183.8 and 179.8 Hv, respectively. Their corrosion rates and corrosion potentials were 2.4×10-4Acm-2, -515.9 mVSHE and 6.8×10-4 Acm-2, -523.6 mVSHE in NACE standard TM0284-96 solution at room temperature, respectively. 15Ch2MFA steel showed better quasi-nano-hardness and corrosion resistance than 15Cr2NHFA steel in this test condition.