• 제목/요약/키워드: Ni-$ZrO_2$

검색결과 319건 처리시간 0.027초

Microstructure characterization and mechanical properties of Cr-Ni/ZrO2 nanocomposites

  • Sevinc, O zlem;Diler, Ege A.
    • Advances in nano research
    • /
    • 제13권4호
    • /
    • pp.313-323
    • /
    • 2022
  • The microstructure and mechanical properties of Cr-Ni steel and Cr-Ni steel-matrix nanocomposites reinforced with nano-ZrO2 particles were investigated in this study. Cr-Ni steel and Cr-Ni/ZrO2 nanocomposites were produced using a combination of high-energy ball milling, pressing, and sintering processes. The microstructures of the specimens were analyzed using EDX and XRD. Compression and hardness tests were performed to determine the mechanical properties of the specimens. Nano-ZrO2 particles were effective in preventing chrome carbide precipitate at the grain boundaries. While t-ZrO2 was detected in Cr-Ni/ZrO2 nanocomposites, m-ZrO2 could not be found. Few α'-martensite and deformation bands were formed in the microstructures of Cr-Ni/ZrO2 nanocomposites. Although nano-ZrO2 particles had a negligible impact on the strength improvement provided by deformation-induced plasticity mechanisms in Cr-Ni/ZrO2 nanocomposites, the mechanical properties of Cr-Ni steel were significantly improved by using nano-ZrO2 particles. The hardness and compressive strength of Cr-Ni/ZrO2 nanocomposite were higher than those of Cr-Ni steel and enhanced as the weight fraction of nano-ZrO2 particles increased. Cr-Ni/ZrO2 nanocomposite with 5wt.% nano-ZrO2 particles had almost twofold the hardness and compressive strength of Cr-Ni steel. The nano-ZrO2 particles were considerably more effective on particle-strengthening mechanisms than deformation-induced strengthening mechanisms in Cr-Ni/ZrO2 nanocomposites.

Ni-Mn 산화물 NTC 서미스터의 미세구조와 전기적 특성에 미치는 ZrO2첨가의 효과 (Effect of ZrO2 Addition on the Microstructure and Electrical Properties of Ni-Mn Oxide NTC Thermistors)

  • 박경순;방대영;윤성진;최병현
    • 한국세라믹학회지
    • /
    • 제40권1호
    • /
    • pp.11-17
    • /
    • 2003
  • Ni-Mn 산화물 NTC 서미스터의 미세구조와 전기적 특성에 미치는 Zr $O_2$ 첨가의 효과를 연구하였다. Zr $O_2$를 포함하는 Ni-Mn-Zr 산화물 소결체의 주요 상은 입방정 스피넬 구조를 가지는 NiO-Mn$_3$ $O_4$-Zr $O_2$의 고용체와 정방정 결정구조를 가지는 Zr $O_2$ 상이였다. Zr $O_2$의 첨가량이 증가함에 따라 Ni-Mn-Zr산화물의 고용체를 형성하지 못하고 생성된 Zr $O_2$의 양이 증가하였다. NiO-Mn$_3$ $O_4$-Zr $O_2$ NTC 서미스터에 있어서 절대온도 역수(l/T)에 대한 로그 비저항(log $ho$)은 직선적인 관계가 있었고, 비저항, B$_{140}$320/정수 및 활성화 에너지는 Zr $O_2$ 함량이 증가함에 따라 크게 증가하였다.

Physicochemical and Catalytic Properties of NiSO4/CeO2-ZrO2 Catalyst Promoted with CeO2 for Acid Catalysis

  • Sohn, Jong-Rack;Shin, Dong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권8호
    • /
    • pp.1265-1272
    • /
    • 2007
  • A solid acid catalyst, NiSO4/CeO2-ZrO2 was prepared simply by promoting ZrO2 with CeO2 and supporting nickel sulfate on CeO2-ZrO2. The support of NiSO4 on ZrO2 shifted the phase transition of ZrO2 from amorphous to tetragonal to higher temperatures because of the interaction between NiSO4 and ZrO2. The surface area of 10-NiSO4/1-CeO2-ZrO2 promoted with CeO2 and calcined at 600 oC was very high (83 m2/g) compared to that of unpromoted 10-NiSO4/ZrO2 (45 m2/g). This high surface area of 10-NiSO4/1-CeO2-ZrO2 was due to the promoting effect of CeO2 which makes zirconia a stable tetragonal phase as confirmed by XRD. The role of CeO2 was to form a thermally stable solid solution with zirconia and consequently to give high surface area and acidity of the sample, and high thermal stability of the surface sulfate species. 10-NiSO4/1- CeO2-ZrO2 containing 1 mol% CeO2 and 10 wt% NiSO4, and calcined at 600 oC exhibited maximum catalytic activities for both reactions, 2-propanol dehydration and cumene dealkylation.

Ce/Zr 비율에 따른 Ni/CeO2-ZrO2 촉매가 메탄의 수증기 개질 반응에서 미치는 영향 (Effect of Ce/Zr Ratios on Ni/CeO2-ZrO2 Catalysts in Steam Reforming of Methane Reaction)

  • 성인호;조경태;이종대
    • Korean Chemical Engineering Research
    • /
    • 제62권1호
    • /
    • pp.125-131
    • /
    • 2024
  • 본 연구에서는 제조된 Ni/CexZr1-xO2 촉매를 허니컴 구조의 금속 모노리스 구조체 표면에 코팅하여 수증기 메탄 개질 반응에 대한 활성을 연구하였다. Ce/Zr의 비율을 달리한 지지체를 합성하여 수증기 메탄 개질 반응에서의 거동을 확인하였으며, Ni 함량이 촉매 활성에 미치는 영향을 분석하기 위해 다양한 Ni 함량의 촉매를 제조하였다. 촉매의 특성은 XRD, BET, TPR 및 SEM으로 분석하였으며 TPR 분석에서 활성 금속 Ni이 CeO2-ZrO2 혼합물 지지체와 강한 상호작용으로 Ni-Ce-Zr 산화물을 형성하였음을 나타내었다. 15 wt% Ni/Ce0.80Zr0.20O2 촉매는 수증기 메탄 개질 반응에서 가장 높은 활성 및 안정성을 보였다. 우수한 산소저장 및 공여 특성의 CeO2와 열적 특성의 ZrO2를 복합소재로 제조하여 활성과 안정성이 향상된 촉매를 합성하였다.

에틸렌 이량화를 위한 새로운 NiO-ZrO2/WO3촉매의 제조와 특성 (Preparation and Characterization of New NiO-ZrO2/WO3 Catalyst for Ethylene Dimerization)

  • 손종락;신동철;박만영
    • 공업화학
    • /
    • 제7권5호
    • /
    • pp.1006-1014
    • /
    • 1996
  • 에틸렌 이량화반응을 위한 일련의 $NiO-ZrO_2/WO_3$촉매를 염화니켈-옥시염화 질코니움 수용액을 공침시키고 ammonium metatungstate용액으로 함침시킨 다음 공기 중에서 소성하여 제조하였다. X-선 회절과 DSC로부터 얻은 결과를 근거로 하면 $ZrO_2$에 NiO 및 $WO_3$를 첨가하면 $ZrO_2$와 첨가된 산화물과의 상호작용으로 $ZrO_2$의 무정형에서 tetragonal phase로의 상전이 온도가 더 높은 온도로 이동되었다. $WO_3$가 첨가되지 않은 $NiO-ZrO_2$는 에틸렌 이량화반응에 전혀 촉매 활성을 나타내지 아니하였으나 $WO_3$가 첨가된 $NiO-ZrO_2/WO_3$촉매는 실온에서도 높은 활성을 나타내었다. 이와 같은 $NiO-ZrO_2/WO_3$의 높은 촉매활성은 $WO_3$의 유도효과에 의한 산세기의 증가와 밀접한 관련이 있었다.

  • PDF

Ni3Al-7.8%Cr-1.3%Zr-0.8%Mo-0.025%B 합금의 고온산화막분석 (Characterization of Oxide Scales Formed on Ni3Al-7.8%Cr-1.3%Zr-0.8%Mo-0.025%B)

  • 김기영;이동복
    • 한국재료학회지
    • /
    • 제12권3호
    • /
    • pp.220-224
    • /
    • 2002
  • The oxide scales formed on $Ni_3Al$-7.8%Cr-1.3%Zr-0.8%Mo-0.025%B after oxidation at 900, 1000 and 110$0^{\circ}C$ in air were studied using XRD, SEM, EPMA and TEM. The oxide scales consisted primarily of $NiO,\; NiAl_2O_4,\;{\alpha}-Al_2O_3,\; monoclinic-ZrO_2,\; and \;tetragonal-ZrO_2$. The outer layer of the oxide scale was rich in Ni-oxides, whereas the internal oxide stringers were rich in Al-oxides and $ZrO_2$. Within the above oxide scales, Cr and Mo tended to exist as dissolved ions.

금속결합층의 조성이 $\textrm{ZrO}_2$-$\textrm{CeO}_2$-$\textrm{Y}_2\textrm{O}_3$ 단열층의 내구성에 미치는 영향 (Effect of Composition of Bond Coating on the Durability of the Plasma Sprayed $\textrm{ZrO}_2$-$\textrm{CeO}_2$-$\textrm{Y}_2\textrm{O}_3$ Thermal Barrier Coating)

  • 김혜성;김병희;서동수
    • 한국재료학회지
    • /
    • 제9권1호
    • /
    • pp.73-80
    • /
    • 1999
  • The effect of alloy compositions of the bond coating on the plasma sprayed-thermal barrier coatings was investigated. The performance of the coating composed of Rene80/NiCrAl/ZrO$_2$-CeO$_2$-Y$_2$O$_3$ and Rene80/CoNiCrAlY/ZrO$_2$-CeO$_2$-Y$_2$O$_3$was evaluated by isothermal and thermal cyclic test in an ambient atmosphere at 115$0^{\circ}C$. The failure of Rene80/NiCrAl/ZrO$_2$-CeO$_2$-Y$_2$O$_3$ coatings was occurred at the bond coating/ceramic coating interface while Rene80/CoNiCrAlY/ZrO$_2$-CeO$_2$-Y$_2$O$_3$ coating was failed at the substrate/bond coating interface after thermal cyclic test. The lifetime of Rene80/NiCrAl/ZrO$_2$-CeO$_2$-Y$_2$O$_3$coatings was longer than Rene80/CoNiCrAlY/ZrO$_2$-CeO$_2$-Y$_2$O$_3$coating. The oxidation rate of the NiCrAl bond coating examined by TGA was lower than CoNiCrAlY bond coatings. In summary, these results suggest that Rene80/CoNiCrAlY/ZrO$_2$-CeO$_2$-Y$_2$O$_3$system as thermal barrier coating be not suitable considering the durability of the coating layer for high temperature oxidation and thermal stress.

  • PDF

$ZrO_2$와 NiTi 합금의 반응접합 : 분석투과전자현미경을 이용한 $ZrO_2/NiTi$ 접합층 반응생성물 분석 (Reaction Bonding of $ZrO_2$ and NiTi : Reaction Products Analyses on $ZrO_2/NiTi$ Bonding Interface with AEM)

  • 김영정;김환
    • 한국세라믹학회지
    • /
    • 제30권11호
    • /
    • pp.949-954
    • /
    • 1993
  • Microstructural development at the ZrO2/NiTi bonding interface and reaction products were examined and identified with SEM and AEM. Ti-oxide, Ti2Ni and Ni2Ti layer were observed whose thickness depends on bonding temperature typically. The development of Ti-oxide layer is related with oxygen ion in ZrO2 and liquid phase Ti2Ni. It is considered that compositional deviation from homogeneity and residual stress caused by thermal expansion mismatch are closely related with the formation of the Ti2Ni phase.

  • PDF

NiSO4 Supported on FeO-promoted ZrO2 Catalyst for Ethylene Dimerization

  • Sohn, Jong-Rack;Kim, Young-Tae;Shin, Dong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권11호
    • /
    • pp.1749-1756
    • /
    • 2005
  • The $NiSO_4$ supported on FeO-promoted $ZrO_2$ catalysts were prepared by the impregnation method. FeOpromoted $ZrO_2$ was prepared by the coprecipitation method using a mixed aqueous solution of zirconium oxychloride and iron nitrate solution followed by adding an aqueous ammonia solution. The addition of nickel sulfate (or FeO) to $ZrO_2$ shifted the phase transition of $ZrO_2$ (from amorphous to tetragonal) to higher temperatures because of the interaction between nickel sulfate (or FeO) and $ZrO_2$. 10-$NiSO_4$/5-FeO-$ZrO_2$ containing 10 wt % $NiSO_4$ and 5 mol % FeO, and calcined at 500 ${^{\circ}C}$ exhibited a maximum catalytic activity for ethylene dimerization. $NiSO_4$/FeO-$ZrO_2$ catalysts was very effective for ethylene dimerization even at room temperature, but FeO-$ZrO_2$ without $NiSO_4$ did not exhibit any catalytic activity at all. The catalytic activities were correlated with the acidity of catalysts measured by the ammonia chemisorption method. The addition of FeO up to 5 mol % enhanced the acidity, surface area, thermal property, and catalytic activities of catalysts gradually, due to the interaction between FeO and $ZrO_2$ and due to consequent formation of Fe-O-Zr bond.

수증기 개질 반응에서 Ni-La2O3-Ce0.8Zr0.2O2 촉매의 La2O3 함량이 촉매의 성능에 미치는 영향 (The Effect of La2O3 Loading on the Performance of Ni-La2O3-Ce0.8Zr0.2O2 Catalysts for Steam Reforming of Methane)

  • 유성연;김학민;김범준;장원준;노현석
    • 한국수소및신에너지학회논문집
    • /
    • 제29권5호
    • /
    • pp.419-426
    • /
    • 2018
  • $Ni-La_2O_3-Ce_{0.8}Zr_{0.2}O_2$ catalysts with various $La_2O_3$ loading were investigated for hydrogen production from steam reforming of methane (SRM). The $La_2O_3$ loading influenced the physicochemical properties of $Ni-La_2O_3-Ce_{0.8}Zr_{0.2}O_2$ catalysts such as BET surface area, Ni dispersion, Ni size and reducibility. Among the prepared catalysts, $Ni-70La_2O_3-Ce_{0.8}Zr_{0.2}O_2$ catalyst showed the highest activity and stability at a very high gas hourly space velocity (GHSV) of $932,556h^{-1}$. This is mainly due to high Ni dispersion, small Ni size and high reducibility.