DOI QR코드

DOI QR Code

Effect of Ce/Zr Ratios on Ni/CeO2-ZrO2 Catalysts in Steam Reforming of Methane Reaction

Ce/Zr 비율에 따른 Ni/CeO2-ZrO2 촉매가 메탄의 수증기 개질 반응에서 미치는 영향

  • In Ho Seong (Department of Chemical Engineering, Chungbuk National University) ;
  • Kyung Tae Cho (Department of Chemical Engineering, Chungbuk National University) ;
  • Jong Dae Lee (Department of Chemical Engineering, Chungbuk National University)
  • 성인호 (충북대학교 화학공학과) ;
  • 조경태 (충북대학교 화학공학과) ;
  • 이종대 (충북대학교 화학공학과)
  • Received : 2023.12.30
  • Accepted : 2024.01.19
  • Published : 2024.02.01

Abstract

In this study, synthesized Ni/CexZr1-xO2 catalysts were coated on the surface of honeycomb metalic monoliths to investigate catalytic activity in steam reforming of methane reactions. Supports with varying Ce/Zr ratios were synthesized to observe their behavior in the reforming reaction, and catalysts with Ni contents ranging from 5 wt% to 20 wt% were prepared to analyze the effect of Ni loading contents on catalytic activity. The catalysts were characterized by XRD, BET, TPR, and SEM. The TPR analysis indicated the formation of Ni-Ce-Zr oxide with a strong interaction between the active metal Ni and CeO2-ZrO2 support. The 15 wt% Ni/Ce0.80Zr0.20O2 catalyst exhibited the highest activity and stability in the steam reforming of methane reaction. Catalysts with enhanced activity and stability were synthesized by manufacturing composite materials using excellent oxygen storage and donor properties of CeO2 and the thermal properties of ZrO2.

본 연구에서는 제조된 Ni/CexZr1-xO2 촉매를 허니컴 구조의 금속 모노리스 구조체 표면에 코팅하여 수증기 메탄 개질 반응에 대한 활성을 연구하였다. Ce/Zr의 비율을 달리한 지지체를 합성하여 수증기 메탄 개질 반응에서의 거동을 확인하였으며, Ni 함량이 촉매 활성에 미치는 영향을 분석하기 위해 다양한 Ni 함량의 촉매를 제조하였다. 촉매의 특성은 XRD, BET, TPR 및 SEM으로 분석하였으며 TPR 분석에서 활성 금속 Ni이 CeO2-ZrO2 혼합물 지지체와 강한 상호작용으로 Ni-Ce-Zr 산화물을 형성하였음을 나타내었다. 15 wt% Ni/Ce0.80Zr0.20O2 촉매는 수증기 메탄 개질 반응에서 가장 높은 활성 및 안정성을 보였다. 우수한 산소저장 및 공여 특성의 CeO2와 열적 특성의 ZrO2를 복합소재로 제조하여 활성과 안정성이 향상된 촉매를 합성하였다.

Keywords

References

  1. Dincer, I., "Renewable Energy and Sustainable Development: a Crucial Review," Renew. Sust. Energ., 4(2), 157-175(2000). https://doi.org/10.1016/S1364-0321(99)00011-8
  2. Abbas, H. F. and Daud, W. W., "Hydrogen Production by Methane Decomposition: a Review," Int. J. Hydrog., 35(3), 1160-1190 (2010a). https://doi.org/10.1016/j.ijhydene.2009.11.036
  3. Younas, M., Shafique, S., Hafeez, A., Javed, F. and Rehman, F., "An Overview of Hydrogen Production: Current Status, Potential, and Challenges," Fuel, 316, 123317(2022).
  4. Zhu, X., Liu, X., Lian, H., Liu, J. and Li, X., "Plasma Catalytic Steam Methane Reforming for Distributed Hydrogen Production," Catal. Today, 337, 69-75(2019). https://doi.org/10.1016/j.cattod.2019.05.015
  5. Ogo, S. and Sekine, Y., "Recent Progress in Ethanol Steam Reforming Using Non-noble Transition Metal Catalysts: A Review," Fuel Process. Technol., 199, 106238(2020).
  6. Ambrosetti, M., Onincontro, D., Balzarotti, R., Beretta, A., Groppi, G. and Troncori, E., "H2 Production by Methane Steam Reforming over Rh/Al2O3 Catalyst Packed in Cu Foams: A Strategy for the Kinetic Investigation in Concentrated Conditions," Catal. Today, 387, 107-118(2022). https://doi.org/10.1016/j.cattod.2021.06.003
  7. Araujo, J. C. S., Oton, L. F., Bessa, B., Neto, A. B. S., Oliverio, A. C., Lang, R., Otuobo, L. and Bueno, J. M. C., "The Role of Pt Loading on La2O3-Al2O3 Support for Methane Conversion Reactions via Partial Oxidation and Steam Reforming," Fuel, 254, 115684(2019).
  8. Azoncot, L., Bobadilla, L. F., Santos, J. L., Cordoba, J. M., Centeno, M. A. and Odriozola, J. A., "Influence of the Preparation Method in the Metal-support Interaction and Reducibility of Ni-Mg-Al Based Catalysts for Methane Steam Reforming," Int. J. Hydrog., 44(36), 19827-19840(2019). https://doi.org/10.1016/j.ijhydene.2019.05.167
  9. Bej, B., Pradhan, N. C. and Neogi, S., "Production of Hydrogen by Steam Reforming of Methane Over Alumina Supported Nano-NiO/SiO2 Catalyst," Catal. Today, 207, 28-35(2013). https://doi.org/10.1016/j.cattod.2012.04.011
  10. Wang, Y., Peng, J., Zhou, C., Lim, Z.-Y., Wu, C., Ye, S. and Wang, W. G., "Effect of Pr Addition on the Properties of Ni/Al2O3 Catalysts with An Application in the Autothermal Reforming of Methane," Int. J. Hydrog., 39(2), 778-787(2014). https://doi.org/10.1016/j.ijhydene.2013.10.071
  11. Boukha, Z., Gonzalez, C. J., Rivas, B. D., Velasco, J. R. G., Ortiz, J. I. G. and Fonseca, R. L, "Synthesis, Characterisation and Performance Evaluation of Spinel-derived Ni/Al2O3 Catalysts for Various Methane Reforming Reactions," Appl. Catal. B., 158-159, 190-201(2014). https://doi.org/10.1016/j.apcatb.2014.04.014
  12. Li, M.-R., Lu, Z. and Wang, G.-C., "The Effect of Potassium on Steam-methane Reforming on the Ni4/Al2O3 Surface: a DFT Study," Catal. Sci. Technol. 7, 3613-3625(2017). https://doi.org/10.1039/C7CY00986K
  13. Tada, M., Zhang, S., Malwadkar, S., Ishiguro, N., Soga, J., Nagai, Y., Tezuka, K., Imoto, H., Matsuo, S. O. Y., Ohkoshi, S. and Iwasawa, Y., "The Active Phase of Nickel/Ordered Ce2Zr2Ox Catalysts with a Discontinuity (x=7-8) in Methane Steam Reforming," Angew. Chem. Int. Ed., 51(37), 9361-9365(2012). https://doi.org/10.1002/anie.201205167
  14. Mohamed, H. O., Kulkarni, S. R., Velisoju, V. K., Zhang, Y., Yerrayya, A., Bai, X., Kolubah, P. D., Yoo, X., Morlanes, N. and Castano, P., "Isolating the Effect of Co and Ce on Ni-X-Y/Al2O3 bi- and Trimetallic Reforming Catalysts for Hydrogen Generation," Int. J. Hydrog., 51, 922-935(2024).
  15. Xu, S. and Wang, X., "Highly Active and Coking Resistant Ni/CeO2-ZrO2 Catalyst for Partial Oxidation of Methane," Fuel., 84(5), 563-567(2005). https://doi.org/10.1016/j.fuel.2004.10.008
  16. Matina, T., Vissanu, M., Thirasak, R. and Somchia, O., "Catalytic Activity of CeO2-ZrO2 Mixed Oxide Catalysts Prepared via Sol-gel Technique: CO Oxidation," Catal. Today, 68(1-3), 53-61 (2001). https://doi.org/10.1016/S0920-5861(01)00322-4
  17. Querino, P. S., Bispo, J. R. C. and Rangel, M. D. C., "The Effect of Cerium on the Properties of Pt/ZrO2 Catalysts in the WGSR," Catal. Today, 107-108, 920-925(2005). https://doi.org/10.1016/j.cattod.2005.07.032
  18. Yin, K., Davis, R. J., Mahamulkar, S., Jones, C. W., Agrawal, P., Shibata, H. and Malek, A., "Catalytic Oxidation of Solid Carbon and Carbon Monoxide over Cerium-zirconium Mixed Oxides," AIChE J., 63(2), 725-738(2017). https://doi.org/10.1002/aic.15575
  19. El-Solomony, R. A., Acharya, K., Al-Fatesh, A. S., Osman, A. I., Alreshaidan, S. B., Kumar, N. S., Ahmed, H. and Kumor, R., "Enhanced Direct Methanation of CO2 Using Ni-based Catalysts Supported on ZrO2, CeO2-ZrO2, and La2O3-ZrO2: The Effect of Support Material on the Reducible NiO-interacted Species and Catalytic Activity," Mol. Catal., 547, 113378(2023).
  20. Zhu, X., Wei, Y., Wang, H. and Li, K., "Ce-Fe Oxygen Carriers for Chemical-looping Steam Methane Reforming," Int. J. Hydrog., 38(11), 4492-4501(2013). https://doi.org/10.1016/j.ijhydene.2013.01.115
  21. Laosiripojana, N. and Assabumrungrat, S., "Methane steam Reforming over Ni/Ce-ZrO2 Catalyst: Influences of Ce-ZrO2 Support on Reactivity, Resistance Toward Carbon Formation, and Intrinsic Reaction Kinetics," Appl. Catal. A-Gen, 290(1-2), 200-211(2005). https://doi.org/10.1016/j.apcata.2005.05.026
  22. Xiu, G. H., Li, P. and Rodrigues, A. E., "Sorption Enhanced Reaction Process with Reactive Regeneration," Chem. Eng. Sci., 57, 3893-3908(2002). https://doi.org/10.1016/S0009-2509(02)00245-2