• 제목/요약/키워드: Ni film

검색결과 866건 처리시간 0.032초

ICP-CVD 비정질 실리콘에 형성된 처리온도에 따른 저온 니켈실리사이드의 물성 변화 (Property of Nickel Silicides on ICP-CVD Amorphous Silicon with Silicidation Temperature)

  • 김종률;최용윤;박종성;송오성
    • 한국산학기술학회논문지
    • /
    • 제9권2호
    • /
    • pp.303-310
    • /
    • 2008
  • ICP-CVD(inductively-coupled Plasma chemical vapor deposition)를 사용하여 $250^{\circ}C$기판온도에서 140 nm 두께의 수소화된 비정질 실리콘(${\alpha}$-Si:H)을 제조하였다. 그 위에 30 nm-Ni을 열증착기를 이용하여 성막하고, $200{\sim}500^{\circ}C$ 사이에서 $50^{\circ}C$간격으로 30분간 진공열처리하여 실리사이드화 처리하였다. 완성된 실리사이드의 처리온도에 따른 실리사이드의 면저항값 변화, 미세구조, 상 분석, 표면조도 변화를 각각 사점면저항측정기, HRXRD(high resolution X-ray diffraction), FE-SEM(field emission scanning electron microscope), TEM(transmission electron microscope), SPM(scanning probe microscope)을 활용하여 확인하였다. $300^{\circ}C$에는 고저항상인 $Ni_3Si$, $400^{\circ}C$에서는 중저항상인 $Ni_2Si$, $450^{\circ}C$이상에서 저저항의 나노급 두께의 균일한 NiSi를 확인되었다. SPM결과에서 저저항 상인 NiSi는 $450^{\circ}C$에서 RMS(root mean square) 표면조도 값도 12 nm이하로 전체 공정온도를 $450^{\circ}C$까지 낮추어 유리와 폴리머기판 등 저온기판에 대응하는 저온 니켈모노실리사이드 공정이 가능하였다.

Energy Band Structure, Electronic and Optical properties of Transparent Conducting Nickel Oxide Thin Films on $SiO_2$/Si substrate

  • Denny, Yus Rama;Lee, Sang-Su;Lee, Kang-Il;Lee, Sun-Young;Kang, Hee-Jae;Heo, Sung;Chung, Jae-Gwan;Lee, Jae-Cheol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.347-347
    • /
    • 2012
  • Nickel Oxide (NiO) is a transition metal oxide of the rock salt structure that has a wide band gap of 3.5 eV. It has a variety of specialized applications due to its excellent chemical stability, optical, electrical and magnetic properties. In this study, we concentrated on the application of NiO thin film for transparent conducting oxide. The energy band structure, electronic and optical properties of Nickel Oxide (NiO) thin films grown on Si by using electron beam evaporation were investigated by X-Ray Photoelectron Spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS), and UV-Spectrometer. The band gap of NiO thin films determined by REELS spectra was 3.53 eV for the primary energies of 1.5 keV. The valence-band offset (VBO) of NiO thin films investigated by XPS was 3.88 eV and the conduction-band offset (CBO) was 1.59 eV. The UV-spectra analysis showed that the optical transmittance of the NiO thin film was 84% in the visible light region within an error of ${\pm}1%$ and the optical band gap for indirect band gap was 3.53 eV which is well agreement with estimated by REELS. The dielectric function was determined using the REELS spectra in conjunction with the Quantitative Analysis of Electron Energy Loss Spectra (QUEELS)-${\varepsilon}({\kappa},{\omega})$-REELS software. The Energy Loss Function (ELF) appeared at 4.8, 8.2, 22.5, 38.6, and 67.0 eV. The results are in good agreement with the previous study [1]. The transmission coefficient of NiO thin films calculated by QUEELS-REELS was 85% in the visible region, we confirmed that the optical transmittance values obtained with UV-Spectrometer is the same as that of estimated from QUEELS-${\varepsilon}({\kappa},{\omega})$-REELS within uncertainty. The inelastic mean free path (IMFP) estimated from QUEELS-${\varepsilon}({\kappa},{\omega})$-REELS is consistent with the IMFP values determined by the Tanuma-Powell Penn (TPP2M) formula [2]. Our results showed that the IMFP of NiO thin films was increased with increasing primary energies. The quantitative analysis of REELS provides us with a straightforward way to determine the electronic and optical properties of transparent thin film materials.

  • PDF

무전해 니켈도금에 대하여(II) (Electroless Nickel Plating)

  • 지태촌;여운관
    • 한국표면공학회지
    • /
    • 제15권2호
    • /
    • pp.57-67
    • /
    • 1982
  • Electroless Ni-plating is often utilized in industries due to its physical and mechanical characteristics in contrast to conventional electroplatings. Thus, electroless Ni-plating will be broadly applicated in many fields. However, The physial and mechanical properties of this depositss depend largely on the structure and P content of film and heat treatment. And here discused about the important results of those past research.

  • PDF