• Title/Summary/Keyword: Ni dissolution

Search Result 99, Processing Time 0.021 seconds

Behavior of Reverted Austenite in Fe-Ni-Mn-(Ti) Maraging Steels (Fe-Ni-Mn-(Ti)계 마르에이징강에서 역변태 오스테나이트의 거동)

  • Kim, Sung-Joon
    • Analytical Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.141-147
    • /
    • 1993
  • The behavior of reverted austenite in Fe-Ni-Mn(Ti) maraging steels has been investigated in the temperature range from $400^{\circ}C$ to $550^{\circ}C$ using TEM equipped with EDX. Four kinds of reverted austenite appeared depending on the aging temperatures and time : Widmanstatten, granular, lath-like and recrystallized austenite. The reverted austenites are enriched in Ni and Mn due to the dissolution of precipitates and redistribution of alloying elements. Widmanstatten austenite appears unformly in the lath martensite having the K-S orientation relationship with the martensite lath, while lath-like martensites showed K-S and N relations depending on the chemistry and heat treating condition. The recrystallized austenite forms at $550^{\circ}C$ after long aging times : some becomes unstable and transforms to lath martensite on cooling.

  • PDF

Mitigating Metal-dissolution in a High-voltage 15 wt% Si-Graphite‖Li-rich Layered Oxide Full-Cell Utilizing Fluorinated Dual-Additives

  • Kim, Jaeram;Kwak, Sehyun;Pham, Hieu Quang;Jo, Hyuntak;Jeon, Do-Man;Yang, A-Reum;Song, Seung-Wan
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.269-278
    • /
    • 2022
  • Utilization of high-voltage electrolyte additive(s) at a small fraction is a cost-effective strategy for a good solid electrolyte interphase (SEI) formation and performance improvement of a lithium-rich layered oxide-based high-energy lithium-ion cell by avoiding the occurrence of metal-dissolution that is one of the failure modes. To mitigate metal-dissolution, we explored fluorinated dual-additives of fluoroethylene carbonate (FEC) and di(2,2,2-trifluoroethyl)carbonate (DFDEC) for building-up of a good SEI in a 4.7 V full-cell that consists of high-capacity silicon-graphite composite (15 wt% Si/C/CF/C-graphite) anode and Li1.13Mn0.463Ni0.203Co0.203O2 (LMNC) cathode. The full-cell including optimum fractions of dual-additives shows increased capacity to 228 mAhg-1 at 0.2C and improved performance from the one in the base electrolyte. Surface analysis results find that the SEI stabilization of LMNC cathode induced by dual-additives leads to a suppression of soluble Mn2+-O formation at cathode surface, mitigating metal-dissolution event and crack formation as well as structural degradation. The SEI and structure of Si/C/CF/C-graphite anode is also stabilized by the effects of dual-additives, contributing to performance improvement. The data give insight into a basic understanding of cathode-electrolyte and anode-electrolyte interfacial processes and cathode-anode interaction that are critical factors affecting full-cell performance.

Austenite Grain Growth Prediction Modeling of C-Mn-Mo-Ni Steel HAZ Considering Precipitates (C-Mn-Mo-Ni강 용접열영향부의 석출물을 고려한 오스테나이트 결정립 성장 거동 예측)

  • 서영대;엄상호;이창희;김주학;홍준화
    • Journal of Welding and Joining
    • /
    • v.20 no.5
    • /
    • pp.78-86
    • /
    • 2002
  • A metallurgical model for the prediction of prior austenite grain size considering the dissolution kinetics of M$_3$C precipitates at the heat affected zone of SA508-cl.3 was proposed. The isothermal kinetics of grain growth and dissolution were respectively described by well-known equation, $dD/dT=M({\Delta}F_{eff})^M$ and Whelan's analytical model. The isothermal grain growth experiments were carried out for measure the kinetic parameters of grain growth. The precipitates of the base metal and the specimens exposed to thermal cycle were examined by TEM-carbon extraction replica method. The model was assessed by the comparison of BUE simulation experiments and showed good consistencies. However, there was no difference between the model considering and ignoring $M_3C$ precipitates. It seems considered that pinning force exerted by $M_3C$ Precipitates was lower than driving force for grain growth due to large size and small fraction of precipitates, and mobility of grain boundary was low in the lower temperature range.

Bonding Phenomena during Transient Liquid Phase Bonding of CMSX-4, High Performance Single Crystal Superalloy (고성능 단결정 초내열합금 CMSX-4의 액상확산접합현상)

  • 김대업
    • Journal of Welding and Joining
    • /
    • v.19 no.4
    • /
    • pp.423-428
    • /
    • 2001
  • The bonding phenomena of Ni base single crystal superalloy. CMSX-4 during transient liquid phase(TLP) bonding was investigated using MBF-80 insert metal. Bonding of CMSX-4 was carried out at 1,373∼1,548K for 0∼19.6ks in vacuum. The (001) orientation of each test specimen was aligned perpendicular to the bonding interface. The dissolution width of base metal was increased when the bonding temperature and holding time were increased. The eutectic width diminished linearly with the square root of holding time during isothermal solidification process. Borides were formed in the bonded layer during TLP bonding operation. The solid phase grew epitaxially into the liquid phase from substrates and single crystallization could be readily achieved during the isothermal solidification.

  • PDF

Reduction leaching of manganese nodule with copper matte (동매트를 이용한 망간 단괴의 환원 침출)

  • 한오형;최경수
    • Resources Recycling
    • /
    • v.4 no.3
    • /
    • pp.26-31
    • /
    • 1995
  • The leaching characteristics of manganese nodules were investigated in dilute hydrochloric acid solution using copper malie as a reductant. Thc capper matte has been found to be an effective reductant for exhacting morc than 96% of Mn, 95% of Ni, 91% of Ca, 88% of Cu and 36% of Fe when leached in 2.5 M HCI at 70$^{\circ}$C for 2hr. The dissolutions of Mu, Co, and Ni depend on thc amaunt of added cappcr matte. 7he ratin of liquid and solid is an important [actor on the extraction of metals during leaching The dissolution af Mn, Co, Ni and Cu incrcascd w~th the increase in temperalure of leachant. The leaching rates of Mn, Co, NI and Cu from manganese nodule m the presznce of copper matte is limited by bath thc surface chemical reaction and pare diffusion processes. Thc activation energies far Mn. Co: Ni and Cu were 17. 61, 12.8, 17.2 and 57.88 KcaUmol, rcspcctively.

  • PDF

Triallyl Borate as an Effective Separator/Cathode Interphase Modifier for Lithium-ion Batteries

  • Ha Neul Kim;Hye Rim Lee;Taeeun Yim
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.272-282
    • /
    • 2023
  • Ni-rich layered oxides cathode has recently gained attention as an advanced cathode material due to their applicable energy density. However, as the Ni component in the layered site is increased, the high reactivity of Ni4+ results in parasitic reaction associated with decomposing electrolyte, which leads to a rapid decreasing the lifespan of the cell. The electrolyte additive triallyl borate (TAB) improves interfacial stability, leading to a stable cathode-electrolyte interphase (CEI) layer on the LNCM83 cathode. A multi-functionalized TAB additive can produce a uniformly distributed CEI layer via electrochemical oxidation, which implies an increase in long-term cycling performance. After 100 cycles at elevated temperature, the cell tested by 0.75 TAB retained 88.3% of its retention ratio, whereas the cell performed by TAB-free electrolyte retained 64.1% of its retention. Once the TAB additive formed CEI layers on the LNCM83 cathode, it inhibited the decomposition of carbonate-based solvents species in addition to the dissolution of transition metal components from the cathode. The addition of TAB to LNCM83 cathode material is believed to be a promising way to increase the electrochemical performance.

Catalytic CO2 Methanation over Ni Catalyst Supported on Metal-Ceramic Core-Shell Microstructures (금속-세라믹 코어-쉘 복합체에 담지된 Ni 금속 촉매를 적용한 CO2 메탄화 반응 특성연구)

  • Lee, Hyunju;Han, Dohyun;Lee, Doohwan
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.154-162
    • /
    • 2022
  • Microstructured Al@Al2O3 and Al@Ni-Al LDH (LDH = layered double hydroxide) core-shell metal-ceramic composites are prepared by hydrothermal reactions of aluminum (Al) metal substrates. Controlled hydrothermal reactions of Al metal substrates induce the hydrothermal dissolution of Al ions at the Al-substrate/solution interface and reconstruction as porous metal-hydroxides on the Al substrate, thereby constructing unique metal-ceramic core-shell composite structures. The morphology, composition, and crystal structure of the core-shell composites are affected largely by the ions in the hydrothermal solution; therefore, the critical physicochemical and surface properties of these unique metal-ceramic core-shell microstructures can be modulated effectively by varying the solution composition. A Ni/Al@Al2O3 catalyst with highly dispersed catalytic Ni nanoparticles on an Al@Al2O3 core-shell substrate was prepared by a controlled reduction of an Al@Ni-Al LDH core-shell prepared by hydrothermal reactions of Al in nickel nitrate solution. The reduction of Al@Ni-Al LDH leads to the exolution of Ni ions from the LDH shell, thereby constructing the Ni nanoparticles dispersed on the Al@Al2O3. The catalytic properties of the Ni/Al@Al2O3 catalyst were investigated for CO2 methanation reactions. The Ni/Al@Al2O3 catalyst exhibited 2 times greater CO2 conversion than a Ni/Al2O3 catalyst prepared by conventional incipient wetness impregnation and showed high structural stability. These results demonstrate the high effectiveness of the design and synthesis methods for the metal-ceramic composite catalysts derived by hydrothermal reactions of Al metal substrates.

Enhanced extraction of copper and nickel based on the Egyptian Abu Swayeil copper ore

  • Somia T. Mohamed;Abeer A. Emam;Wael M. Fathy;Amany R. Salem;Amr B. ElDeeb
    • Analytical Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.63-78
    • /
    • 2024
  • The continuous increasing of the global demand of copper and nickel metals raises the interest in developing alternative technologies to produce them from copper sulfide ore. Also, in line with Egypt's vision 2030 for achieving the sustainable socioeconomic development which aims at developing alternative and eco-friendly technologies for processing the Egyptian ores to produce these strategic products instead of its importing. These metals enhance the advanced electrical and electronic industries. The current work aims at investigating the recovery of copper and nickel from Abu Swayeil copper ore using pug leaching technique by sulfuric acid. The factors affecting the pug leaching process including the sulfuric acid concentration, leaching time and temperature have been investigated. The copper ore sample was characterized chemically using X-ray fluorescence (XRF) and scanning electron microscope (SEM-EDX). A response surface methodology develops a quadratic model that expects the nickel and copper leaching effectiveness as a function of three controlling factors involved in the procedure of leaching was also investigated. The obtained results showed that the maximum dissolution efficiency of Ni and Cu are 99.06 % and 95.30%, respectively which was obtained at the following conditions: 15 % H2SO4 acid concentration for 6 hr. at 250 ℃. The dissolution kinetics of nickel and copper that were examined according to heterogeneous model, indicated that the dissolution rates were controlled by surface chemical process during the pug leaching. The activation energy of copper and nickel dissolution were 26.79 kJ.mol-1 and 38.078 kJ.mol-1 respectively; and the surface chemical was proposed as the leaching rate-controlling step.

Effects of heating rate on the bonded interlayer in base metal powder mixture used transient liquid phase diffusion bonded Ni-base superalloy (모재 분말 혼합 삽입재를 이용한 니켈기 초내열합금의 천이액상확산접합에 있어서 가열속도가 접합부에 미치는 영향)

  • 김성욱;장중철;김재철;이창희
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.48-50
    • /
    • 2004
  • TLP 접합 공정에서 모재와 삽입금속 사이에서의 확산을 통하여 액상 삽입금속은 고온에서 등온으로 유지 시 등온 응고된다. D.S.Duvall은 느린 가열시 매우 빠른 속도로 가열 시 보다 낮은 온도에서 dissolution이 완료되고 응고가 발생할 것으로 예상하였다. (중략)

  • PDF

SCC Mechanism of Ni Base Alloys in Lead Contaminated Water

  • Hwang, Seong Sik;Kim, Dong Jin;Lim, Yun Soo;Kim, Joung Soo;Park, Jangyul;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.187-191
    • /
    • 2008
  • Transgranular stress corrosion cracking of nickel base alloys was reported by Copson and Dean in 1965. Study to establish this cracking mechanism needs to be carried out. Laboratory stress corrosion tests were performed for mill annealed(MA) or thermally treated(TT) steam generator tubing materials in a high temperature water containing lead. An electrochemical interaction of lead with the alloying elements of SG tubings was also investigated. Alloy 690 TT showed a transgranular stress corrosion cracking in a 40% NaOH solution with 5000 ppm of lead, while intergranular stress corrosion racking was observed in a 10% NaOH solution with 100 ppm lead. Lead seems to enhance the disruption of passive film and anodic dissolution of alloy 600 and alloy 690. Crack tip blunting at grain boundary carbides plays a role for the transgranular stress corrosion cracking.