• 제목/요약/키워드: Ni buffer layer

검색결과 100건 처리시간 0.022초

초전도 선재의 중간 반응 방지막으로써 Ni 기판위에 제조된 NiO 막의 특성 분석 (Fabrication and characterization of nickel oxide films on textured nickel substrate for a superconductor buffer layer)

  • Park, Eunchul;Inki Hong;Hyunsuk Hwang;Taehyun Sung;Kwangsoo No
    • Progress in Superconductivity
    • /
    • 제3권1호
    • /
    • pp.95-98
    • /
    • 2001
  • Recently, NiO films have been studied as a buffer layer to fabricate the superconductor with preferred orientation and as a diffusion barrier to prevent the reaction between superconductor and textured nickel substrate . We fabricated NiO films on textured Ni substrate by thermal oxidation with various variables of temperature, oxidation time, atmosphere, and cooling rate. We investigated the alignment of NiO films by XRD and pole figure and the microstructures by SEM. (200) <001> alignment of NiO film was observed at the oxidation condition of $1200^{\circ}C$ far 10min and slow cooling in O2 atmosphere. During the process in Ar atmosphere, we could also observe the thermal faceting which affects the alignment of NiO alms on Ni substrate.

  • PDF

Cu/Ni/Polyimide 시스템의 접착력 및 계면화학반응 (The Adhesion Strength and Interface Chemical Reaction of Cu/Ni/Polyimide System)

  • 최철민;채홍철;김명한
    • 한국재료학회지
    • /
    • 제17권12호
    • /
    • pp.664-668
    • /
    • 2007
  • The magnetron sputtering was used to deposit Ni buffer layers on the polyimide surfaces to increase the adhesion strength between Cu thin films and polyimide as well as to prevent Cu diffusion into the polyimide. The Ni layer thickness was varied from 100 to $400{\AA}$. The adhesion strength increased rather significantly up to $200{\AA}$ of Ni thickness, however, there was no significant increase in strength over $200{\AA}$. The XPS analysis revealed that Ni thin films could increase the adhesion strength by reacting with the polar C=O bonds on the polyimide surface and also it could prevent Cu diffusion into the polyimide. The Cu/Ni/ polyimide multilayer thin films showed a high stability even at the high heating temperature of $200^{\circ}C$, however, at the temperature of $300^{\circ}C$, Cu diffused through the Ni buffer layer into polyimide, resulting in the drastic decrease in adhesion strength.

YSZ/CeO$_2$/Ni 에서 산소 분압의 완층충 특성에 대한 영향 (The effects of $O_2$ partial pressure on the property of buffer layer in YSZ/CeO$_2$/Ni)

  • 이규한;염도준
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 1999년도 High Temperature Superconductivity Vol.IX
    • /
    • pp.326-328
    • /
    • 1999
  • We investigated the effects of residual gas partial pressure on the property of a CeO$_2$ buffer layer on a textured Ni tape, where the buffer layer was deposited by e-beam evaporation. The oxygen partial pressure were varied from 10$^{-7}$ to 10$^{-4}$ Torr. we also changed the surface condition for the surface oxygenation. We'll describe the detail of the resultant textures of the buffer layers and effects of YBCO growth on them

  • PDF

전자빔 증착법으로 이축배향된 Ni-3%W 기판 위에 높은 증착률로 제조된 $CeO_2$ 완충층에 대한 연구 (A study on $CeO_2$ buffer layer on biaxially textured Ni-3%W substrate deposited by electron beam evaporation with high deposition rate)

  • 김혜진;이종범;김병주;홍석관;이현준;권병국;이희균;홍계원
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제13권1호
    • /
    • pp.1-5
    • /
    • 2011
  • [ $CeO_2$ ]has been widely used for single buffer layer of coated conductor because of superior chemical and structural compatibility with $ReBa_2Cu_3O_{7-{\delta}}$(Re=Y, Nd, Sm, Gd, Dy, Ho, etc.). But, the surface of $CeO_2$ layer showed cracks because of the large difference in thermal expansion coefficient between metal substrate and deposited $CeO_2$ layer, when thickness of $CeO_2$ layer exceeds 100 nm on the biaxially textured Ni-3%W substrate. The deposition rate has been limited to be less than 6 $\AA$/sec in order to get a good epitaxy. In this research, we deposited $CeO_2$ single buffer layers on biaxially textured Ni-3%W substrate with 2-step process such as thin nucleation layer(>10 nm) with low deposition rate(3 $\AA$/sec) and thick homo epitaxial layer(>240 nm) with high deposition rate(30 $\AA$/sec). Effect of deposition temperature on degree of texture development was tested. Thick homo epitaxial $CeO_2$ layer with good texture without crack was obtained at $600^{\circ}C$, which has ${\Delta}{\phi}$ value of $6.2^{\circ}$, ${\Delta}{\omega}$ value of $4.3^{\circ}$ and average surface roughness(Ra) of 7.2 nm within $10{\mu}m{\times}10{\mu}m$ area. This result shows the possibility of preparing advanced Ni substrate with simplified architecture of single $CeO_2$ layer for low cost coated conductor.

Mn-Ir/Ni-Fe 교환결합형 다층박막의 미세구조 및 열적특성 (Microstructure and Thermal Properties of Mn-Ir/Ni-Ee Exchange Biased Multilayers)

  • 윤성용;전동민;김장현;서수정;노재철;이확주
    • 한국자기학회지
    • /
    • 제10권6호
    • /
    • pp.274-279
    • /
    • 2000
  • 본 연구에서는 D.C 마그네트론 스퍼터링을 사용하여 Mn-Ir/Ni-Fe교환결합형 다층박막의 하지층 및 적층구조에 따른 자기적 특성 및 열적 특성을 미세구조의 관점에서 연구하였다. 교환결합자계( $H_{e{\chi}}$)와 Blocking Temperature( $T_{b}$)는 Mn-Ir/Ni-Fe 계면에서의 반강자성체의 결정립 크기에 의존하는 것을 알 수 있었다. 또한 Mn-Ir/Ni-Fe 교환결합형 다층박막에서 (111) 우선방위의 발생으로 인하여 $H_{e{\chi}}$가 증가됨을 알 수 있었다. $H_{e{\chi}}$가 발생하는 Mn-Ir/Ni-Fe 다층박막은 Mn-Ir 층에 전위가 생성되어 grain-to-grain epitaxy 관계가 이루어지는 것을 알 수 있었다.다.

  • PDF

NiO 완충층 두께 조절에 의한 OLEDs 전기-광학적 특성 (Electrical and Luminescent Properties of OLEDs by Nickel Oxide Buffer Layer with Controlled Thickness)

  • 최규채;정국채;김영국;조영상;최철진;김양도
    • 대한금속재료학회지
    • /
    • 제49권10호
    • /
    • pp.811-817
    • /
    • 2011
  • In this study, we have investigated the role of a metal oxide hole injection layer (HIL) between an Indium Tin Oxide (ITO) electrode and an organic hole transporting layer (HTL) in organic light emitting diodes (OLEDs). Nickel Oxide films were deposited at different deposition times of 0 to 60 seconds, thus leading to a thickness from 0 to 15 nm on ITO/glass substrates. To study the influence of NiO film thickness on the properties of OLEDs, the relationships between NiO/ITO morphology and surface properties have been studied by UV-visible spectroscopy measurements and AFM microscopy. The dependences of the I-V-L properties on the thickness of the NiO layers were examined. Comparing these with devices without an NiO buffer layer, turn-on voltage and luminance have been obviously improved by using the NiO buffer layer with a thickness smaller than 10 nm in OLEDs. Moreover, the efficiency of the device ITO/NiO (< 5 nm)/NPB/$Alq_3$/ LiF/Al has increased two times at the same operation voltage (8V). Insertion of a thin NiO layer between the ITO and HTL enhances the hole injection, which can increase the device efficiency and decrease the turn-on voltage, while also decreasing the interface roughness.

Plasma source와 RF power에 따른 NiO박막의 우선배향성 및 표면형상 (The Evolution of Preferred Orientation and Morphology of NiO Thin Films under Variation of Plasma Source and RF Power)

  • Hyunwook Ryu;Park, Jinseong
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.121-121
    • /
    • 2003
  • NiO thin films are very attractive for use as an antiferromagnetic layer, p-type transparent conducting films, in electrochromic devices and functional sensor layer for chemical sensors, due to their excellent chemical stability, as well as optical, electrical and magnetic properties. In addition, (100)- and (111)-oriented NiO films can be used as buffer layers on which to deposit other oriented oxide films, such as c-axis-oriented perovskite-type ferromagnetic films and superconducting films, because of the similarity in symmetry of oxygen ion lattice and lattice constants between the NiO films and the oriented oxide films. Thus, controlling the crystallographic orientation and surface roughness of the NiO films for a buffer layer are very important.

  • PDF

YBCO coated conductor with a single $Y_2$O$_3$ buffer layer on biaxially textured Ni and NiW substrates

  • D. Q. Shi;R. K. Ko;K. J. Song;J. K. Chung;H. S. Ha;Kim, H. S.;Park, C.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제6권2호
    • /
    • pp.7-10
    • /
    • 2004
  • A study regarding the epitaxial growth of single $Y_2O_3$ buffer layer on biaxially textured Ni and NiW substrates using pulsed laser deposition is presented. Different deposition conditions were employed and compared in order to obtain good epitaxial $Y_2O_3$ film, furthermore importantly, to obtain good YBCO superconducting films. Following YBCO film deposited by PLD on the top of $Y_2O_3$ films have a good structure and superconducting properties. The J$_{c}$ of YBCO films on $Y_2O_3$ /Ni and $Y_2O_3$ /NiW were $1.0{\times}10^6 A/cm^2 and 1.1\times}10^6 A/cm^2$<.TEX> at 77K and self-field respectively, which indicated that $Y_2O_3$ is a suitable candidate as a single buffer layer for the fabrication of YBCO coated conductor.r.

Improvement of the luminous efficiency of organic light emitting diode using LiF anode buffer layer

  • 박원혁;김강훈
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.147-147
    • /
    • 2015
  • The multilayer structure of the organic light emitting diode has merits of improving interfacial characteristics and helping carriers inject into emission layer and transport easier. There are many reports to control hole injection from anode electrode by using transition metal oxide as an anode buffer layer, such as V2O5, MoO3, NiO, and Fe3O4. In this study, we apply thin films of LiF which is usually inserted as a thin buffer layer between electron transport layer(ETL) and cathode, as an anode buffer layer to reduce the hole injection barrier height from ITO. The thickness of LiF as an anode buffer layer is tested from 0 nm to 1.0 nm. As shown in the figure 1 and 2, the luminous efficiency versus current density is improved by LiF anode buffer layer, and the threshold voltage is reduced when LiF buffer layer is increased up to 0.6 nm then the device does not work when LiF thickness is close to 1.0 nm As a result, we can confirm that the thin layer of LiF, about 0.6 nm, as an anode buffer reduces the hole injection barrier height from ITO, and this results the improved luminous efficiency. This study shows that LiF can be used as an anode buffer layer for improved hole injection as well as cathode buffer layer.

  • PDF