• 제목/요약/키워드: Ni Nanoparticles

검색결과 172건 처리시간 0.041초

Optically transparent and electrically conductive indium-tin-oxide nanowires for transparent photodetectors

  • Kim, Hyunki;Park, Wanghee;Ban, Dongkyun;Kim, Hong-Sik;Patel, Malkeshkumar;Yadav, Pankaj;Kim, Joondong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.390.2-390.2
    • /
    • 2016
  • Single crystalline indium-tin-oxide (ITO) nanowires (NWs) were grown by sputtering method. A thin Ni film of 5 nm was coated before ITO sputtering. Thermal treatment forms Ni nanoparticles, which act as templates to diffuse Ni into the sputtered ITO layer to grow single crystalline ITO NWs. Highly optical transparent photoelectric devices were realized by using a transparent metal-oxide semiconductor heterojunction by combining of p-type NiO and n-type ZnO. A functional template of ITO nanowires was applied to this transparent heterojunction device to enlarge the light-reactive surface. The ITO NWs/n-ZnO/p-NiO heterojunction device provided a significant high rectification ratio of 275 with a considerably low reverse saturation current of 0.2 nA. The optical transparency was about 80% for visible wavelengths, however showed an excellent blocking UV light. The nanostructured transparent heterojunction devices were applied for UV photodetectors to show ultra fast photoresponses with a rise time of 8.3 mS and a fall time of 20 ms, respectively. We suggest this transparent and super-performing UV responser can practically applied in transparent electronics and smart window applications.

  • PDF

Fabrication of Core-Shell Structured Ni-Based Alloy Nanopowder by Electrical Wire Explosion Method

  • Lee, A-Young;Lee, Gwang-Yeob;Oh, Hye-Ryeong;Kim, Hyeon-Ah;Kim, Song-Yi;Lee, Min-Ha
    • 한국분말재료학회지
    • /
    • 제23권6호
    • /
    • pp.409-413
    • /
    • 2016
  • Electrical wire explosion in liquid media is a promising method for producing metallic nanopowders. It is possible to obtain high-purity metallic nanoparticles and uniform-sized nanopowder with excellent dispersion stability using this electrical wire explosion method. In this study, Ni-Fe alloy nanopowders with core-shell structures are fabricated via the electrical explosion of Ni-Fe alloy wires 0.1 mm in diameter and 20 mm in length in de-ionized water. The size and shape of the powders are investigated by field-emission scanning electron microscopy, transmission electron microscopy, and laser particle size analysis. Phase analysis and grain size determination are conducted by X-ray diffraction. The result indicate that a core-shell structured Ni-Fe nanopowder is synthesized with an average particle size of approximately 28 nm, and nanosized Ni core particles are encapsulated by an Fe nanolayer.

Chlorella vulgaris의 흡광도, 클로로필 및 개체수 통합 영향에 근거한 중금속 및 나노입자 독성 조사 (Toxicity Evaluation of Metals and Metal-oxide Nanoparticles based on the Absorbance, Chlorophyll Content, and Cell Count of Chlorella vulgaris)

  • 장현진;이문희;이은진;양신;공인철
    • 청정기술
    • /
    • 제23권1호
    • /
    • pp.27-33
    • /
    • 2017
  • 본 연구에서는 중금속 7종(Cu, Cd, Cr, As(III), As(V), Zn, Ni) 및 나노입자 5종(CuO, ZnO, NiO, $TiO_2$, $Fe_2O_3$)에 대한 독성을 수계 대표 생물종인 녹조류 Chlorella vulgaris를 이용한 생물검정법으로 평가하였다. 조류에 미치는 영향은 흡광도, 클로로필 및 개체수 측정에 대한 결과를 통합하여 평가하였다. 중금속의 통합결과독성($TEC_{50}$) 순서는 Cr ($0.7mgL^{-1}$) > Cu ($1.7mgL^{-1}$) > Cd ($3.2mgL^{-1}$) > Zn ($3.9mgL^{-1}$) > Ni ($13.2mgL^{-1}$) > As(III) ($17.8mgL^{-1}$) ${\gg}$ As(V) (> $1000mgL^{-1}$)로 나타났다. 중금속은 측정종말점에 따라 일부 상이한 민감도와 독성이 조사되었다. 나노입자의 독성($TEC_{50}$) 순서는 ZnO ($2.4mgL^{-1}$) > NiO ($21.1mgL^{-1}$) > CuO ($36.6mgL^{-1}$) > $TiO_2$ ($62.5mgL^{-1}$) > $Fe_2O_3$ ($82.7mgL^{-1}$)로 나타났다. 나노입자는 측정종말점간에 비슷한 민감도와 독성을 보였다. 따라서 오염물의 독성을 평가하기 위해서 단일 방법에 의한 결과보다는 다양한 측정종말점의 통합결과에 근거한 접근이 적절할 것이다.

화학적 증기 증착 방법을 통해 제조한 소수성 폴리디메틸실록산 박막: 수처리로의 응용 (Hydrophobic Polydimethylsiloxane Thin Films Prepared by Chemical Vapor Deposition: Application in Water Purification)

  • 한상욱;김광대;김주환;엄성현;김영독
    • 공업화학
    • /
    • 제28권1호
    • /
    • pp.1-7
    • /
    • 2017
  • 폴리디메틸실록산(PDMS)은 화학적 증기 증착 방법을 통해 다양한 물질에 5 nm 두께 이하의 박막 형태로 증착될 수 있다. $SiO_2$, $TiO_2$, ZnO, C, Ni 및 NiO와 같은 다양한 종류의 나노입자 표면에도 PDMS 박막은 증기 증착을 통해 고르게 형성될 수 있으며, PDMS가 증착된 표면은 완벽한 소수성을 갖게 된다. 이 소수성 박막은 안정성이 높아 산, 염기 및 자외선 노출 시에도 잘 분해되지 않으며, 또한 PDMS로 코팅된 나노입자는 다양한 환경 분야에 응용될 수 있다. PDMS 코팅된 소수성 $SiO_2$ 입자는 기름/물 혼합액에서 기름과 선택적으로 반응하고, 기름 유출 사고 시 유류 확산을 억제할 수 있으며, 유출된 기름을 물에서 물리적으로 쉽게 분리할 수 있게 해준다. PDMS 코팅된 $TiO_2$를 진공 상태에서 열처리 할 경우 $TiO_2$ 표면은 완전하게 친수성으로 개질되며, 이때 $TiO_2$가 가시광선을 흡수하여 반응할 수 있게 하는 산소 빈자리 또한 발생하게 된다. PDMS 코팅 후 열처리한 $TiO_2$는 아무 처리하지 않은 $TiO_2$에 비해 가시광 하에서 수중의 유기 염료를 분해하는데 더 뛰어난 광촉매 활성을 보인다. 우리는 해당 연구에서 제시하는 간단한 PDMS 박막 코팅 방법이 다양한 환경 과학 및 공학 분야에서 응용될 수 있음을 소개하고자 한다.

Facile Synthesis, Characterization and Photocatalytic Activity of MWCNT-Supported Metal Sulfide Composites under Visible Light Irradiation

  • Zhu, Lei;Meng, Ze-Da;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제49권2호
    • /
    • pp.155-160
    • /
    • 2012
  • This paper reported a simple deposition-precipitation method, introducing the metal (Ni, Ag and Sn) and $Na_2S{\cdot}5H_2O$ to preparedispersion metal sulfide nanoparticles on the surface of the Multi-walled carbon nanotube for synthesis of CNT-$M_xS_y$ ($NiS_2$, $Ag_2S$, SnS) composite photocatalysts. The characterization of the prepared CNT-$M_xS_y$ ($NiS_2$, $Ag_2S$, SnS) composites was performed by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray analysis and BET analysis. Furthermore, the MB degradation rate constant for CNT-SnS composite was $5.68{\times}10^{-3}$ under visible light irradiation, which was much higher than the corresponding values for other samples. The detailed formation and photocatalytic mechanism are also provided here.

대학교 행정실 실내 외 공기 중 나노입자와 중금속 농도에 관한 연구 (A Study on the Concentration of Nanoparticles and Heavy Metals in Indoor/Outdoor Air in a University Administrative Public Office)

  • 최수현;임지영;박희진;정은경;김종오;손부순
    • 한국환경보건학회지
    • /
    • 제38권6호
    • /
    • pp.493-502
    • /
    • 2012
  • Objectives: The purpose of this study is to investigate the mass concentration of nanoparticles and understand the characteristics of elements of heavy metal concentrations within nanoparticles in the air using Micro-Orifice Uniform Deposit Impactor Model-110 (MOUDI-110), based on indoor and outdoor air. Methods: This Study sampled nanoparticles using MOUDI-110 indoors (office) and outdoors at S University in Asan, Korea in order to reveal the concentration of nanoparticles in the air. Sampling continued for nine months (10 times indoors and 14 times outdoors) from March to November 2010. Mass concentrations of nanoparticle and concentrations of heavy metals (Al, Mn, Zn, Ni, Cu, Cr, Pb) were analyzed. Results: Indoors, geometric mean concentration of nanoparticles ranged in size from 0.056 ${\mu}m$ to 0.10 ${\mu}m$ and those of 0.056 ${\mu}m$ or less recorded 0.929 ${\mu}g/m^3$ and 1.002 ${\mu}g/m^3$, respectively. On the other hand, the levels were lower outdoors with 0.819 ${\mu}g/m^3$ and 0.597 ${\mu}g/m^3$. Mann-Whitney U tests showed that the difference between the indoors and the outdoors was statistically meaningful in terms of particles of 0.056 ${\mu}m$ or less (p<0.05) in size. These results are possibly influenced by the use of printers and duplicators as the factor that increased the concentration of nanoparticles. In seasonal concentration distribution, the level was higher during the summer compared to in the autumn. Those of 0.056 ${\mu}m$ or less in size presented a statistically meaningful difference during the summer (p<0.05). These results may be influenced by photochemical event as the factor that makes the levels high. Regarding zinc, among the other heavy metals, the fine particles ranged in size from 0.056 ${\mu}m$ to 0.10 ${\mu}m$ and those of 0.056 ${\mu}m$ or less recorded 1.699 $ng/m^3$ and 1.189 $ng/m^3$ in the outdoors. In the indoors, the levels were lower, with 0.745 $ng/m^3$ and 0.617 $ng/m^3$. Cr and Ni at the size of 0.056 ${\mu}m$ or less, both of which have been known to pose severe health effects, recorded higher concentrations indoors with 0.736 $ng/m^3$ and 0.177 $ng/m^3$, compared to 0.444 $ng/m^3$ and 0.091 $ng/m^3$ outdoors. By season, Zn, Ni, Cu and Pb posted a high level of indoor concentration during the fall. As for Cr, the level of concentration indoors was higher than outdoors both during the summer and the autumn. Conclusion: This study indicates the result of an examination of nano-sized particles and heavy metal concentrations. It will provide useful data for the determination of basic nanoparticle standards in the future.

Infiltration법을 이용한 LaySr1-yFexTi1-xO3계 나노복합 연료극 제조 (Fabrication of LaySr1-yFexTi1-xO3-based Nanocomposite Solid Oxide Fuel Cell Anodes by Infiltration)

  • 윤종설;최영주;황해진
    • 한국세라믹학회지
    • /
    • 제51권3호
    • /
    • pp.224-230
    • /
    • 2014
  • Nano-sized gadolinium-doped ceria (GDC)/nickel particle-dispersed $La_ySr_{1-y}Ti_{1-x}Fe_xO_3$ (LSFTO)-based composite solid oxide fuel cell anodes were fabricated by an infiltration method and the effects of the GDC/Ni nanoparticles on the anode polarization resistance and cell performance were investigated in terms of the infiltration time and nickel content. The anodic polarization resistance of the LSFTO anode was significantly enhanced by GDC and/or Ni infiltration and it decreased with increasing infiltration time and Ni content, respectively. It is believed that the observed phenomena are associated with enhancement of the ionic conductivity and catalytic activity in the nanocomposite anodes by the addition of GDC and Ni. Power densities of cells with the LSFTO and LSFTO-GDC/Ni nanocomposite anodes were 150 and $300mW/cm^2$ at $800^{\circ}C$, respectively.

Self-Supported NiSe/Ni Foam: An Efficient 3D Electrode for High-Performance Supercapacitors

  • Zhang, Jingtong;Zhao, Fuzhen;Du, Kun;Zhou, Yan
    • Nano
    • /
    • 제13권11호
    • /
    • pp.1850136.1-1850136.12
    • /
    • 2018
  • Three-dimensional (3D) mixed phases NiSe nanoparticles growing on the nickel foam were synthesized via a simple one-step hydrothermal method. A series of experiments were carried out to control the morphology by adjusting the amount of selenium in the synthetic reaction. Meanwhile, the as-prepared novel column-acicular structure NiSe exist three advantages including ideal electrical conductivity, high specific capacity and high cycling stability. It delivered a high capacitance of $10.8F\;cm^{-2}$ at a current density- of $5mA\;cm^{-2}$. An electrochemical capacitor device operating at 1.6 V was then constructed using NiSe/NF and activated carbon (AC) as positive and negative electrodes. Moreover, the device showed high energy density of $31W\;h\;kg^{-1}$ at a power density of $0.81kW\;kg^{-1}$, as well as good cycling stability (77% retention after 1500 cycles).