• Title/Summary/Keyword: Ni Electrode

Search Result 550, Processing Time 0.028 seconds

A Study on Characteristics of Repair Welding for Cast Iron Part of Diesel Engine for Ship (선박용 디젤기관의 주철부품 보수용접 특성에 관한 연구)

  • Kim Jin-Gyeong;Kang Myung-Shin;Kim Young-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.2 s.69
    • /
    • pp.41-45
    • /
    • 2006
  • Arc welding is sometimes used to repair damaged cast iron parts in diesel engine for driving n ship. In this case cold arc welding is good for saving the time and results in good repairing. But if some difference in hardness on welding zones made with AWS E Ni-CI and NiFe-CI happen, repaired parts would be cracked in a short. In order to overcome this default, the study is performed on varying preheating temperature of welding parts, selecting welding rod and welding work way. The result will be used on ship's working shop.

The Effect of Mechanical Grinding or Electrochemical Properties of $CaNi_5$ Hydrogen Storage Alloy ($CaNi_5$ 수소저장합금의 전기화학 특성에 미치는 MG 처리 효과)

  • Lee C. R.;Kang S. G.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.106-111
    • /
    • 1999
  • The effect of the MG on the electrochemical charge-discharge properties of $CaNi_5$ hydrogen storage alloys was investigated under Ar and $H_2$ atmosphere. $CaNi_5$ alloy was partially decomposed to CaO and Ni phase during the MG process. The decomposition of $CaNi_5$ alloy was enhanced by the MG process which leads to crash and reformation of oxide layer on the alloy surface. As the MG process time increased, initial discharge capacity of the electrode was reduced, but the decay rate of the capacity compared to $CaNi_5$ alloys was slower. It may be described that the degradation of $MG-CaNi_5$ electrode was caused by the reduction of the reversible hydrogen reaction sites and increasing polarization resistance of hydrogen adsorption resulted from phase decomposition and disorder during the MG process, and/or by hydroxide formation during the electrochemical charge-discharge cycles.

The Effects of Partial Substitution of Mo and Heat Treatment on the Electrode Characteristics of ZrV0.1Mn0.7Ni1.2 Hydrogen Storage alloy (Ni-MH 2차 전지용 ZrV0.1Mn0.7Ni1.2 수소저장합금의 전극특성에 미치는 Mo의 부분치환과 열처리의 영향)

  • Han, Dongsoo;Oh, Myunghark;Jeong, Chigyu;Chung, Wonsub;Kim, Ingon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.1
    • /
    • pp.16-24
    • /
    • 1998
  • Recently Zr-based $AB_2$ type hydrogen absorbing alloy has received much attention as a negative electrode material for the Ni-MH batteries because of its high capacity. In this study $ZrV_{0.1}Mn_{0.7}Ni_{1.2}$ alloy was chosen and the effects of heat treatment and a partial substitution of the Mo in Mn site on the various electrode properties were investigated. The alloys was prepared by arc melting (as-cast sample). Some of them were heat treated at $1,100^{\circ}C$ for 4 hours. After this they were differentiated by the different cooling rates of slow cooling and quenching. Various electrode characteristics such as activation process, high rate dischargeability and self discharge characteristic were investigated with the three types of electrodes. It was found that heat treated alloys resulted in an increase in plateau flatness of P-C isotherms however both discharge capacity and high rate capability were decreased. And the partial substitution of Mo for Mn in $ZrV_{0.1}Mn_{0.7}Ni_{1.2}$ alloy improved the self-discharge characteristic without the loss of discharge capacity (300mAh/g).

  • PDF

Electrochemical Properties of Ti/IrO2/SnO2-Sb-Ni Electrode for Water Treatment (수처리용 Ti/IrO2/SnO2-Sb-Ni 전극의 전기화학적 특성평가)

  • Yang, So Young
    • Journal of Environmental Science International
    • /
    • v.29 no.10
    • /
    • pp.943-949
    • /
    • 2020
  • In this work, we prepared a heterojunction anode with a surface layer of SnO2-Sb-Ni (SSN) on a Ti/IrO2 electrode by thermal decomposition to improve the electrochemical activity of the Ti/IrO2 electrode. The Ti/IrO2-SSN electrode showed significantly improved electrochemical activity compared with Ti/IrO2. For the 0.1 M NaCl and 0.1 M Na2SO4 electrolytes, the onset potential of the Ti/IrO2-SSN electrode shifted in the positive direction by 0.1 VSCE and 0.4 VSCE, respectively. In 2.0-2.5 V voltages, the concentration in Ti/IrO2-SSN was 2.59-214.6 mg/L Cl2, and Ti/IrO2 was 0.55-49.21 mg/L Cl2. Moreover, the generation of the reactive chlorine species and degradation of Eosin-Y increased by 3.79-7.60 times and 1.06-2.15 times compared with that of Ti/IrO2. Among these voltages, the generation of the reactive chlorine species and degradation of Eosin-Y were the most improved at 2.25 V. Accordingly, in the Ti/IrO2-SSN electrode, it can be assumed that the competitive reaction between chlorine ion oxidation and water oxidation is minimized at an applied voltage of 2.25V.

The electrochemical properties of Zr-Ti-V-Ni-Mn hydrogen storage alloys with various compositions for an electrode of Ni-MH secondary battery (Ni-MH 2차 전기 전극용 Zr-Ti-V-Ni-Mn계 수소저장합금의 조성에 따른 전기화학적 특성)

  • Choi, Seung-Jun;Jung, So-Yi;Park, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.4
    • /
    • pp.219-224
    • /
    • 1999
  • Effects of alloy modification for the $Zr_{0.7}Ti_{0.3}V_{0.4}Ni_{1.2}Mn_{0.4}$ alloy as an electrode materials have been investigated. When Ti in the alloy was partially substituted by Zr, the hydrogen storage capacity and subsequently the discharge capacity increased significantly, however, the activation characteristic and rate capability decreased. By substituting Mn with other elements (Cr, Co and Fe) in the alloy, discharge capacity decreased but the cycle life and rate capability were improved. Considering both the discharge capacity, the high rate discharge property and cycle life, the $Zr_{0.7}Ti_{0.3}V_{0.4}Ni_{1.2}Mn_{0.3}Cr_{0.1}$ alloy among the alloys subjected to the test was found to be a prominent alloy for a practical usage.

  • PDF

Corrosion and Passivation of Nickel Rotating Disk Electrode in Borate Buffer Solution (Borate 완충용액에서 니켈 회전원판전극의 부식과 부동화)

  • Kim, Younkyoo
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.5
    • /
    • pp.533-539
    • /
    • 2013
  • The electrochemical corrosion and passivation of Ni rotating disk electrod in borate buffer solution was studied with potentiodynamic and electrochemical impedance spectroscopy. The mechanisms of both the active dissolution and passivation of nickel and the hydrogen evolution in reduction reaction were hypothetically established while utilizing the Tafel slope, impedance data, the rotation speed of Ni-RDE and the pH dependence of corrosion potential and current. Based on the EIS data, an equivalent circuit was suggested. In addition, carefully measured were the electrochemical parameters for specific anodic dissolution regions. It can be concluded from the data collected that the $Ni(OH)_2$ oxide film, which is primarily formed by passivation, is converted to NiO by dehydration under the influence of an electrical field.