DOI QR코드

DOI QR Code

Electrochemical Properties of Ti/IrO2/SnO2-Sb-Ni Electrode for Water Treatment

수처리용 Ti/IrO2/SnO2-Sb-Ni 전극의 전기화학적 특성평가

  • Yang, So Young (Advanced institute of water industry, Kyungpook National University)
  • 양소영 (경북대학교 물산업융복합연구소)
  • Received : 2020.02.13
  • Accepted : 2020.09.27
  • Published : 2020.10.31

Abstract

In this work, we prepared a heterojunction anode with a surface layer of SnO2-Sb-Ni (SSN) on a Ti/IrO2 electrode by thermal decomposition to improve the electrochemical activity of the Ti/IrO2 electrode. The Ti/IrO2-SSN electrode showed significantly improved electrochemical activity compared with Ti/IrO2. For the 0.1 M NaCl and 0.1 M Na2SO4 electrolytes, the onset potential of the Ti/IrO2-SSN electrode shifted in the positive direction by 0.1 VSCE and 0.4 VSCE, respectively. In 2.0-2.5 V voltages, the concentration in Ti/IrO2-SSN was 2.59-214.6 mg/L Cl2, and Ti/IrO2 was 0.55-49.21 mg/L Cl2. Moreover, the generation of the reactive chlorine species and degradation of Eosin-Y increased by 3.79-7.60 times and 1.06-2.15 times compared with that of Ti/IrO2. Among these voltages, the generation of the reactive chlorine species and degradation of Eosin-Y were the most improved at 2.25 V. Accordingly, in the Ti/IrO2-SSN electrode, it can be assumed that the competitive reaction between chlorine ion oxidation and water oxidation is minimized at an applied voltage of 2.25V.

Keywords

References

  1. Bauer, R., Fallmann, H., 1997, The photo-fenton oxidation-a cheap and efficient wastewater treatment method, Res. chem. intermed., 23, 4, 341-354. https://doi.org/10.1163/156856797X00565
  2. Chaiyont, R., Badoe, C., Ponce de Leon, C., Nava, J. L., Recio, F. J., Sires, I., Herrasti, P., Walsh, F. C., 2013, Decolorization of methyl orange dye at $IrO_2-SnO_2-Sb_2O_5$ coated titanium anodes, Chem. Eng. & Technol., 36, 1, 123-129. https://doi.org/10.1002/ceat.201200231
  3. Chaplin, B. P., 2014, Critical review of electrochemical advanced oxidation processes for water treatment applications, Environ. Sci. Process Impacts, 16, 1182-1203. https://doi.org/10.1039/C3EM00679D
  4. Chen, G., Chen, X., Yue, P. L., 2002, Electrochemical behavior of novel $Ti/IrOx-Sb_2O_5-SnO_2$ anodes, J. Phys. Chem. B, 106, 4364-4369. https://doi.org/10.1021/jp013547o
  5. Chen, X., Chen, G., Yue, P. L., 2001, Stable $Ti/IrOx-Sb_2O_5-SnO_2$ anode for $O_2$ evolution with low Ir content, J. Phys. Chem. B, 105, 20, 4623-4628. https://doi.org/10.1021/jp010038d
  6. Chun, D., Lim, C., Lee, H., Yoon, W., Lee, T., Kim, D. K., 2018, Electrochemical treatment of urine by using $Ti/IrO_2/TiO_2>$ electrode, J. Water Process. Eng., 26, 1-9. https://doi.org/10.1016/j.jwpe.2018.06.004
  7. Cho, K., Hoffmann, M. R., 2015, BixTi1-xOz functionalized heterojunction anode with an enhanced reactive chlorine generation efficiency in dilute aqueous solutions, Chem. Mater., 27, 2224-2233. https://doi.org/10.1021/acs.chemmater.5b00376
  8. Comninellis, C., 1994, Electrocatalysis in the electro-chemical conversion/combustion of organic pollutants for waste water treatment, Electrochimica Acta, 39, 1857-1862. https://doi.org/10.1016/0013-4686(94)85175-1
  9. Comninellis, Ch., Vercesi, G. P., 1991, Characterization of DSA(R)-type oxygen evolving electrodes: Choice of a coating, J. Appl. Electrochem., 21, 335-345. https://doi.org/10.1007/BF01020219
  10. Feng, Y., Yang, L., Liu, J., Logan, B. E., 2016, Electrochemical technologies for wastewater treatment and resource reclamation, Environ. Sci. Water Res. Technol., 2, 800-831. https://doi.org/10.1039/C5EW00289C
  11. Gupta, V. K., Ali, I., Saleh, T. A., Nayak, A., Agarwal, S., 2012, Chemical treatment technologies for waste-water recycling-an overview, RSC Adv., 2, 6380-6388. https://doi.org/10.1039/c2ra20340e
  12. He, D., Mho, S. I., 2004, Electrocatalytic reactions of phenolic compounds at ferric ion co-doped $SnO_2:Sb^{5+}$ electrodes, J. Electroanal. Chem., 568, 19-27. https://doi.org/10.1016/j.jelechem.2003.12.030
  13. Hong, S., Cho, K., 2018, A Study on reactive chlorine species generation enhanced by heterojunction structures on surface of $IrO_2$-based anodes for water treatment, J. Korean Soc. Water Wastewater, 32, 4, 349-355. https://doi.org/10.11001/jksww.2018.32.4.349
  14. Kim, D. S., Park, Y. S., 2009, A Study on the preparation of the Dimensionally Stable Anode (DSA) with high generation rate of oxidants(I), J. Environ. Sci., 18, 1, 49-60.
  15. Kim, J., Oh, S., Kang, W., Yoo, H. Y., Lee, J., Kim, D., 2019, Superior anodic oxidation in tailored Sb-doped $SnO_2/RuO_2$ composite nanofibers for electrochemical water treatment, J. Catal., 374, 118-126. https://doi.org/10.1016/j.jcat.2019.04.025
  16. Lee, Y., Park, Y., 2020, Ultrathin multilayer $Sb-SnO_2/IrTaOx/TiO_2 $ nanotube arrays as anodes for the selective oxidation of chloride ions, J. Alloys and Compounds, 840, 155622-155629. https://doi.org/10.1016/j.jallcom.2020.155622
  17. Panizza, M., Cerisola, G., 2009, Direct and mediated anodic oxidation of organic pollutants, Chem. Rev., 109, 6541-6569. https://doi.org/10.1021/cr9001319
  18. Rajkumar, D., Kim, J. K., Palanivelu, K., 2005, Indirect electrochemical oxidation of phenol in the presence of chloride for wastewater treatment, Chem. Eng. Technol., 28, 98-105. https://doi.org/10.1002/ceat.200407002
  19. Ryu, S. Y., Hoffmann, M. R., 2016, Mixed-metal semiconductor anodes for electrochemical water splitting and reactive chlorine species generation: implications for electrochemical wastewater treatment, Catalysts, 6, 59-74. https://doi.org/10.3390/catal6040059
  20. Terezo, A. J., Pereira, E. C., 2000, Fractional factorial design applied to investigation properties of $Ti/IrO_2-Nb_2O_5$ electrodes, Electrochim. Acta, 45, 4351-4358. https://doi.org/10.1016/S0013-4686(00)00540-5
  21. Wu, W., Huang, Z. H., Lim, T. T., 2014, Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water, Appl. Catal. A: Gen., 480, 58-78. https://doi.org/10.1016/j.apcata.2014.04.035
  22. Yang, S. Y., Choo, Y. S., Kim, S., Lim, S. K., Lee, J., Park, H., 2012, Boosting the electrocatalytic activities of $SnO_2$ electrodes for remediation of aqueous pollutants by doping with various metals, Appl. Catal. B: Environ., 111-112, 317-325. https://doi.org/10.1016/j.apcatb.2011.10.014
  23. Yang, S. Y., Kim, D., Park, H., 2014, Shift of the reactive species in the Sb-$SnO_2$-electrocatalyzed inactivation of E. coli and degradation of phenol: effects of nickel doping and electrolytes, Environ. Sci. Technol., 48, 5, 2877-2884. https://doi.org/10.1021/es404688z