• Title/Summary/Keyword: Ni촉매

Search Result 453, Processing Time 0.023 seconds

Oxidation Reactions of Carbon Monoxide on NiO and Mn$O_2$ Catalysts (NiO 및 Mn$O_2$ 촉매하에서의 일산화탄소의 산화반응)

  • Choo Kwang Yul;Boo Bong Hyun;Chang Sei Hun Se Heon
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.6
    • /
    • pp.370-379
    • /
    • 1978
  • The specific rate constants for the oxidation reactions of carbon monoxide on a unit catalytic surface area were measured. The catalysts used were NiO made from $Ni(NO_3)_2,\;and\;Ni(OH)_2$, and Mn$O_2$ made from Mn$(NO_3)_2$. At low pressure the reaction rate was found to be of second order and the activation energies were 12 kcal/mole (on NiO made from Ni$(NO_3)_2$, 17 kcal/mole (on NiO made from Ni$(OH)_2)$) and 18 kcal/mole (on Mn$O_2$). Plausible reaction mechanisms were proposed from the experimentally determined reaction orders.

  • PDF

Thermal Durability Characteristics of Precious Metal(Pt) and Additives for a Catalytic Combustor (촉매연소기용 귀금속 촉매와 조촉매의 열적 내구특성 연구)

  • Choi, Byungchul;Ko, Byeongwoon;Kim, Myeonghwan;Sin, Hyeok
    • Journal of Institute of Convergence Technology
    • /
    • v.10 no.1
    • /
    • pp.19-24
    • /
    • 2020
  • The purpose of the study is to investigate the thermal durability characteristics of the Pt catalyst and additives used in a catalytic combustor. The catalyst used in the experiment was based on Pt (3 wt%), and a total of 12 types were prepared using a combination of additives (Ni, La, Ce, Fe, and Co). From the results, In the fresh state, the two types of combination catalysts with the highest C3H8 conversion were Pt_Ce (79.9%) at 500℃, and in the three types of combination catalysts, Pt_La_Ni (93.4%) at 500℃ had the best performance. Among aged catalysts at 850℃ and 8 hours, Pt-La-Ni and Pt-Ni-Ce catalysts showed the highest C3H8 conversion of about 71% at 500℃.

A Numerical Study on the Effectiveness Factor of Ni Catalyst Pellets for Steam-Methane Reforming (수증기-메탄개질용 Ni 촉매의 유용도에 관한 수치적 연구)

  • Choi, Chong-Gun;Nam, Jin-Hyun;Shin, Dong-Hoon;Jung, Tae-Yong;Kim, Young-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.63-66
    • /
    • 2007
  • Reformers which produce hydrogen from natural gas are essential for the operation of residential PEM fuel cells. For this purpose, steam-methane reforming reactions with Ni catalysts is primarily utilized. Commercial Ni catalysts are generally made to have porous pellet shapes in which Ni catalyst particles are uniformly dispersed over Alumina support structures. This study numerically investigates the reduction of catalyst effectiveness due to the mass transport resistances posed by porous structures of spherical catalyst pellets. The multi-component diffusion through porous media and the accurate kinetics of reforming reaction is fully considered in the numerical model. The preliminary results on the variation of the effectiveness factor according to different operation conditions are presented, which is planned to be used to develop correlations in future studies.

  • PDF

Ce addition into Ni/$MgAl_2O_4$ catalysts in combined $H_2O$ and $CO_2$ reforming of $CH_4$ for improvement of coke resistance (수증기-이산화탄소 복합개질 반응에서 Ce가 증진된 Ni-Ce/$MgAl_2O_4$ 촉매의 탄소 침적저항성 향상에 관한 연구)

  • Lee, Sung-Hun;Koo, Kee-Young;Jung, Un-Ho;Roh, Hyun-Seog;Lee, Deuk-Ki;Yoon, Wang-Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.226.1-226.1
    • /
    • 2010
  • 본연구에서는 GTL(gas to liquids)공정의 합성가스 생산을 위해 수증기-이산화탄소 복합개질반응(Combined Steam and Carbon dioxide Reforming of Methane, CSCRM)을 수행하였다. CSCRM은 수증기와 이산화탄소의 공급비 조절을 통해 $H_2$/CO비를 2로 맞추기 용이한 장점을 지니고 있어 다른 단일 개질 반응과 달리 합성가스 생산 시 $H_2$/CO 비율을 조절하기 위한 부가적인 공정이 필요하지 않아 경제적인 공정이다. 일반적으로 사용되는 Ni개질촉매는 가격대비 우수한 성능을 보이지만 S/C비가 낮은 CSCRM의 경우 촉매표면의 탄소침적에 의한 비활성화가 야기되는 문제점이 있다. 따라서 본 연구에서는 산소저장능력과 산소전달능력이 우수한 $CeO_2$를 조촉매로 첨가하여 표면에 형성된 코크 제거가 용이하도록 하였다. Ni-Ce/$MgAl_2O_4$촉매는 동시함침법(co-impregnation)으로 제조하였으며, Ni의 함량을 10wt%로 고정한 상태에서 Ce의 함량을 조절하여 Ce/Ni 최적비를 찾고자 하였다. XRD, TPR, BET, $H_2$-Chemisorption과 같은 촉매의 특성분석을 통해 촉매의 비표면적, 환원특성과 Ni입자의 분산도 등을 확인하였다. Ce를 첨가함에 따라 Ce2.5wt%까지는 비표면적이 증가하다가 이후 점차 줄어드는 경향성을 보였다. 또한, $H_2$-Chemisorption 결과 역시 비표면적과 유사한 경향성을 보였는데, Ce5.0wt%까지 Ni 분산도가 증가 하다가 다시 감소하는 것을 확인할 수 있었다. 반응실험은 $H_2O:CO_2:CH_4:N_2$ = 0.8:0.4:1:1의 공급조건에서 수행하였으며, 질소와 수소 환원분위기로 $700^{\circ}C$에서 1시간 환원 후 $650^{\circ}C$에서 $550^{\circ}C$범위로 온도를 떨어뜨려가면서 반응을 수행하였다. Ce를 첨가함에 따라 $CH_4$ 전환율이 증가를 하다가 Ce2.5wt% 이후 감소하는 것을 확인할 수 있었다. 이러한 높은 촉매 활성은 Ce 첨가로 인해 환원특성이 좋아지고 Ni분산도가 증가하여 담체와 강한 상호작용(SMSI)을 형성함으로 탄소침적 저항성 강화에 기인한 것이다.

  • PDF

Autothermal Reforming of Propane over Ni/CexZr1-xO2 Catalysts (Ni 담지 CexZr1-xO2 촉매상에서 프로판의 자열개질반응)

  • Kong, Jin-Hwa;Park, Nam-Cook;Kim, Young-Chul
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.47-52
    • /
    • 2013
  • In this study, the catalytic performance and characterization of $Ni/Ce_xZr_{1-x}O_2$ were investigated using an autothermal reforming (ATR) process for hydrogen production. The $Ni/Ce_xZr_{1-x}O_2$ catalysts were prepared using the following methods: the water method (CZ-W), urea water method (CZ-UW) and urea, water and ethanol method (CZ-UWA). The performance of $Ni/Ce_xZr_{1-x}O_2$ catalysts in autothermal reforming of propane for hydrogen production was studied in a fixed-bed flow reactor. Reaction tests were conducted by using a feed of $H_2O/C_3H_8/O_2$=3/1/0.37 and $300{\sim}700^{\circ}C$. The CZ-UW and CZ-UWA catalysts showed higher propane conversion and hydrogen yield than the CZ-W catalyst. The activity test confirmed that the improvement in the water-ethanol catalyst was due to the low level of carbon deposition. SEM showed that the surface carbon consisted of clusters on the used CZ-UW catalyst, which is incontrast to the nano-fiber morphology observed on the used CZ-UWA catalyst. It was found that the amount of carbon deposition depends on the preparation method. Especially the $Ni/Ce_{0.75}Zr_{0.25}O_2$ was showed higher propane conversion and hydrogen yield than the other catalysts. Also TGA showed that the resistance of carbon deposition increase to Co addition.

Methane Conversion to Hydrogen Using Ni/Al2O3 Catalyst (Ni/Al2O3 촉매를 이용한 메탄의 수소 전환)

  • Kim, Jun-Keun;Park, Joo-Won;Bae, Jong-Soo;Kim, Jae-Ho;Lee, Jae-Goo;Kim, Younghun;Han, Choon
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.466-470
    • /
    • 2008
  • The objective of this study is to convert methane into hydrogen using a nanoporous catalyst in the $CO_2$ containing syngas generated from the gasified waste. For the purpose, $Ni/Al_2O_3$ catalyst was prepared with the one-pot method. According to analyses of the catalyst, three dimensionally linked sponge shaped particles were created and the prepared nanoporous catalysts had larger surface area and smaller particle size and more uniform pores compared to the sphere shaped commercial catalyst. The catalyst for reforming reaction gave the highest $CH_4$ conversion of 91%, and $CO_2$ conversion of 92% when impregnated with 16 wt% of Ni at the reaction temperature of $750^{\circ}C$. At that time, the prepared catalyst remarkably improved the $CH_4$ and $CO_2$ conversion up to 20% compared to the commercial one.

Transition Metal Catalyzed Carbonylation of Nitrobenzene for the Synthesis of N,N'-diphenylurea (균일계 전이금속 촉매를 이용한 니트로벤젠의 카르보닐화 반응 연구: N,N'-디페닐우레아 합성)

  • Lee, Chul Woo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1079-1085
    • /
    • 1999
  • An investigation was made of the effect of various transition metal catalysts, ligands, and a promoter on the synthesis of N,N'-diphenylurea(DPU) from nitrobenzene, aniline, and carbon monoxide. Homogeneous Pd and Ni catalysts were found to be highly efficient, giving almost quantitative isolated DPU yields at 100% nitrobenzene conversion. Bidentate ligand, 1,3-bis(diphenylphosphino)proane(dppp) showed much improved activity and significantly different reactivity relative to the usual monodentate $PPh_3$ ligand in the presence of Ni and Pd catalysts. These results were inferred to the effect of the cis coordination of bidentate dppp ligand on the metal. The use of a promoter $Et_4NCl$ was indispensable in the case of $PPh_3$, yet inhibited the reaction if used with dppp. It was possible to reuse the Pd-dppp catalyst system, although the catalytic activity was reduced slowly.

  • PDF

Preparation and Characterization of Fe/Ni Nanocatalyst in a Nucleophilic Solvent for Anion Exchange Membrane in Alkaline Electrolysis (친핵성 용매 중에서 자발적 환원반응에 의한 음이온 교환막 수전해용 Fe/Ni 나노 촉매의 제조 및 특성)

  • DAI, GUANXIA;LU, LIXIN;LEE, JAEYOUNG;LEE, HONGKI
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.5
    • /
    • pp.293-298
    • /
    • 2021
  • To synthesize Fe/Ni nanocatalysts loaded on carbon black, Iron(II) acetylacetonate and nickel (II) acetylacetonate and were reduced to Fe and Ni metallic nanoparticles by a spontaneous reduction reaction. The distribution of the Fe and Ni nanoparticles was observed by transmission electron microscopy, and the loading weight of Fe/Ni nanocatalysts on the carbon black was measured by thermogravimetric analyzer. The elemental ratio of Fe and Ni was estimated by energy dispersive x-ray analyzer. It was found that the loading weight of Fe/Ni nanoparticles was 6.23 wt%, and the elemental ratio of Fe and Ni was 0.53:0.40. Specific surface area was measured by BET analysis instrument and I-V characteristics were estimated.

Effect of the Mixture Ratio of Ni-Pt Nanocatalysts on Water Electrolysis Characteristics in AEM System (Ni-Pt 나노 촉매의 혼합비가 음이온 교환막 수전해 특성에 미치는 영향)

  • LU, LIXIN;DAI, GUANXIA;LEE, JAEYOUNG;LEE, HONGKI
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.5
    • /
    • pp.285-292
    • /
    • 2021
  • To study the effect of the mixture ratio of Ni-Pt nanocatalysts on water electrolysis characteristics in anion exchange membrane system, Ni-Pt nanocatalysts were loaded on carbon black by using a spontaneous reduction reaction of acetylacetonate compounds. The loading weight of Ni-Pt nanocatalysts on the carbon black was measured by thermogravimetric analyzer and the elemental ratio of Ni and Pt was estimated by energy dispersive x-ray analyzer. It was found that the loading weight of Ni-Pt nanoparticles was 5.36-5.95 wt%, and the loading weight increased with increasing Pt wt%. As the Ni-Pt loading weight increased, the specific surface area decreased, because Ni-Pt nanoparticles block the pores of carbon black. It was confirmed by BET analysis and dynamic vapor sorption analysis. I-V characteristics were estimated.

Synthesis Gas Production via Partial Oxidation, CO2 Reforming, and Oxidative CO2 Reforming of CH4 over a Ni/Mg-Al Hydrotalcite-type Catalyst

  • Song, Hoon Sub;Kwon, Soon Jin;Epling, William S.;Croiset, Eric;Nam, Sung Chan;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.189-201
    • /
    • 2014
  • Partial oxidation, $CO_2$ reforming and the oxidative $CO_2$ reforming of $CH_4$ to produce synthesis gas over supported Ni hydrotalcite-type ($Ni_{0.5}Ca_{2.5}Al$ catalyst) catalysts were carried out and the effects of metal supports (i.e.; Mg and Ca) on the formation of a stable double-layer structure on the catalysts were evaluated. The $CH_4$ reforming stability was determined to be affected by the differences in the interaction strength between the active Ni ions and support metal ions. Only a Ni-Mg-Al composition produced a highly stable hydrotalcite-type double-layered structure; while the Ni-Ca-Al-type composition did not. Such structure provides excellent stability for the catalyst (-80% efficiency) as confirmed by the long-term $CO_2$ reforming test (-100 h), while the Ni-Ca-Al catalyst exhibited deactivation phases starting at the beginning of the reaction. The interaction strength between the active metal (Ni) and the supporting components (Mg and Al) was determined by temperature-programed reduction (TPR) analyses. The affinity was also confirmed by the TPR temperature because the Ni-Mg-Al catalyst required a higher temperature to reduce the Ni relative to the Ni-Ca-Al catalyst. The highest initial activity for synthesis gas production was observed for the $Ni_{0.5}Ca_{2.5}Al$ catalyst; however, this activity decreased quickly due to coke formation. The $Ni_{0.5}Ca_{2.5}Al$ catalyst exhibited a high reactivity and was more stable than the other catalysts because it had a higher resistance to coke formation.