• 제목/요약/키워드: Ni촉매

검색결과 453건 처리시간 0.018초

Carbon Dioxide-based Plastic Pyrolysis for Hydrogen Production Process: Sustainable Recycling of Waste Fishing Nets (이산화탄소 기반 플라스틱 열분해 수소 생산 공정: 지속가능한 폐어망 재활용)

  • Yurim Kim;Seulgi Lee;Sungyup Jung;Jaewon Lee;Hyungtae Cho
    • Korean Chemical Engineering Research
    • /
    • 제62권1호
    • /
    • pp.36-43
    • /
    • 2024
  • Fishing net waste (FNW) constitutes over half of all marine plastic waste and is a major contributor to the degradation of marine ecosystems. While current treatment options for FNW include incineration, landfilling, and mechanical recycling, these methods often result in low-value products and pollutant emissions. Importantly, FNWs, comprised of plastic polymers, can be converted into valuable resources like syngas and pyrolysis oil through pyrolysis. Thus, this study presents a process for generating high-purity hydrogen (H2) by catalytically pyrolyzing FNW in a CO2 environment. The proposed process comprises of three stages: First, the pretreated FNW undergoes Ni/SiO2 catalytic pyrolysis under CO2 conditions to produce syngas and pyrolysis oil. Second, the produced pyrolysis oil is incinerated and repurposed as an energy source for the pyrolysis reaction. Lastly, the syngas is transformed into high-purity H2 via the Water-Gas-Shift (WGS) reaction and Pressure Swing Adsorption (PSA). This study compares the results of the proposed process with those of traditional pyrolysis conducted under N2 conditions. Simulation results show that pyrolyzing 500 kg/h of FNW produced 2.933 kmol/h of high-purity H2 under N2 conditions and 3.605 kmol/h of high-purity H2 under CO2 conditions. Furthermore, pyrolysis under CO2 conditions improved CO production, increasing H2 output. Additionally, the CO2 emissions were reduced by 89.8% compared to N2 conditions due to the capture and utilization of CO2 released during the process. Therefore, the proposed process under CO2 conditions can efficiently recycle FNW and generate eco-friendly hydrogen product.

Changes in the Physicochemical Characteristics and Trans Acid of Cottonseed Oil during Selective Hydrogenation (선택적 수소첨가 면실유의 이화학적 특성변화 및 트란스산 생성)

  • Kim, Hyean-Wee;Kim, Jong-Soo;Shim, Joong-Hwan;Park, Seong-Joon;Ahn, Tae-Hoe;Park, Ki-Moon;Choi, Chun-Un
    • Korean Journal of Food Science and Technology
    • /
    • 제22권6호
    • /
    • pp.681-685
    • /
    • 1990
  • Changes in the physicochemical characteristics and trans acid of cottonseed oil under the condition of selective hydrogenation, temperature$210^{\circ}C,\;H_2\;pressure\;0.3\;kg/cm^2$ Ni catalyst amount 0.12% (in oil), agitation speed 280 rpm, were investigated. The saturated fatty acid such as palmitic acid and stearic acid did not show any difference, while linoleic acid($50.03%{\rightarrow}9.38%$) were transformed to oleic acid ($20.65%{\rightarrow}60.35%$) during hydrogenation. In linoleic acid isomers, cc form were reduced significantly, but ct, tc, tt form showed little change, respectively. In oleic acid isomer, t form increased markedly, whereas there was no significant difference in c form. Meanwhile, melting point(MP) and solid fat content (SFC) were linearly increased, but iodine value(IV) linearly decreased as hydrogenation proceeded. From these results, linear regression equations were obtained as follows. MP & IV : Y= 1.59-2.36X(r=-0.96, p<0.05), SFC($at\;20^{\circ}C$) & MP : Y=2.81+2.01X(r=0.96, p<0.05), SFC($at\;20^{\circ}C$) & IV : Y=9.40-5.16X(r=-0.99, p<0.01), SFC($at\;20^{\circ}C$) & 18 : 1t : Y=6.25+8.48X(r=0.97, p<0.05)

  • PDF

Study on Preparation of High Purity Lithium Hydroxide Powder with 2-step Precipitation Process Using Lithium Carbonate Recovered from Waste LIB Battery (폐리튬이차전지에서 회수한 탄산리튬으로부터 2-step 침전공정을 이용한 고순도 수산화리튬 분말 제조 연구)

  • Joo, Soyeong;Kang, Yubin;Shim, Hyun-Woo;Byun, Suk-Hyun;Kim, Yong Hwan;Lee, Chan-Gi;Kim, Dae-Guen
    • Resources Recycling
    • /
    • 제28권5호
    • /
    • pp.60-67
    • /
    • 2019
  • A valuable metal recovery from waste resources such as spent rechargeable secondary batteries is of critical issues because of a sharp increase in the amount of waste resources. In this context, it is necessary to research not only recycling waste lithium-ion batteries (LIBs), but also reusing valuable metals (e.g., Li, Co, Ni, Mn etc.) recovered from waste LIBs. In particular, the lithium hydroxide ($LiOH{\cdot}xH_2O$), which is of precursors that can be prepared by the recovery of Li in waste LIBs, can be reused as a catalyst, a carbon dioxide absorbent, and again as a precursor for cathode materials of LIB. However, most studies of recycling the waste LIBs have been focused on the preparation of lithium carbonate with a recovery of Li. Herein, we show the preparation of high purity lithium hydroxide powder along with the precipitation process, and the systematic study to find an optimum condition is also carried out. The lithium carbonate, which is recovered from waste LIBs, was used as starting materials for synthesis of lithium hydroxide. The optimum precipitation conditions for the preparation of LiOH were found as follows: based on stirring, reaction temperature $90^{\circ}C$, reaction time 3 hr, precursor ratio 1:1. To synthesize uniform and high purity lithium hydroxide, 2-step precipitation process was additionally performed, and consequently, high purity $LiOH{\cdot}xH_2O$ powder was obtained.