• Title/Summary/Keyword: Ni/$Al_2O_3$

Search Result 541, Processing Time 0.027 seconds

Formation of Al2O2 supported Ni2P based 3D catalyst for atmospheric deoxygenation of rubberwood sawdust

  • Pranshu Shrivastava
    • Advances in Energy Research
    • /
    • v.8 no.4
    • /
    • pp.223-231
    • /
    • 2022
  • An ex-situ gravitational fixed bed pyrolysis reactor was used over Al2O3 supported Ni2P based catalyst with various Ni/P molar ratios (0.5-2.0) and constant nickel loading of 5.37 mmol/g Al2O3 to determine the hydrodeoxygenation of rubberwood sawdust (RWS) at atmospheric pressure. The 3D catalysts formed were characterized structurally as well as acidic properties were determined by hydrogen-temperature programmed reduction (TPR). The Ni2P phase formed completely on Al2O3 for 1.5 Ni/P ratio, although lesser crystallite sizes of Ni2P were seen at Ni/P ratios less than 1.5. Additionally, it was shown that when nickel loading level increased, acidity increased and specific surface area dropped, probably because nickel phosphate is not easily converted to Ni2P. When Ni/P ratio was 1.5, Ni2P phase fully formed on Al2O3. The catalytic activity was explained in terms of impacts of reaction temperature and Ni/P molar ratio. At relatively high temperature of 450℃, the high-value deoxygenated produce was predominantly composed of n-alkanes. Based on the findings, it was suggested that hydrogenolysis, hydrodeoxygenation, dehydration, decarbonylation, and hydrogenation are all part of mechanism underlying hydrotreatment of RWS. In conclusion, the synthesized Ni2P/ Al2O3 catalyst was capable of deoxygenating RWS with ease at atmospheric pressure, primarily resulting in long chained (C9-C24) hydrocarbons and acetic acid.

Partial Oxidation of Methane for Hydrogen Production over Co and Ni Catalysts (수소생산을 위한 메탄 부분산화용 코발트와 니켈촉매의 반응특성 연구)

  • Lee, Sang-Sik;Hong, Ju-Hwan;Ha, Ho-Jung;Kim, Byung-Kwan;Han, Jong-Dae
    • Korean Chemical Engineering Research
    • /
    • v.48 no.6
    • /
    • pp.776-783
    • /
    • 2010
  • Co and Ni catalysts supported on $Al_2O_3$ for partial oxidation of methane producing hydrogen were synthesized using impregnation to incipient wetness. The activities of these catalysts for the partial oxidation of methane was investigated at 1 atm and $CH_4/O_2=2.0$ in the temperature range of $450{\sim}650^{\circ}C$. The reaction activity of $Ni/Al_2O_3$ and $Co/Al_2O_3$ catalysts with different loading was investigated. And the beneficial effects of Ni addition to $Co/Al_2O_3$ and the promotional effects of Ce and La addition to $Ni/Al_2O_3$ and $Co/Al_2O_3$ were investigated. These catalysts were characterized by XRD and SEM/EDX. Comparing catalyst loadings, 10 wt% Co and 10 wt% Ni were found to be optimal at the experimental conditions. The 10 wt% $Ni/Al_2O_3$ and 10 wt% $Co/Al_2O_3$ catalysts in partial oxidation of methane showed $CH_4$ conversions and CO selectivity close to the thermodynamic equilibrium levels, but showed lower $H_2$ selectivity than equilibrium level. The addition of Ni to $Co/Al_2O_3$ exhibited higher $H_2$ selectivity but beneficial effect was not observed in the $CH_4$ conversion. Addition of Ce to $Co/Al_2O_3$ and addition of La to $Ni/Al_2O_3$ a improved the $CH_4$ conversion level and $H_2$ selectivity.

Large scale synthesis of the geometrically controlled carbon coils using $Al_2O_3$ ceramic boat for the supporting substrate (산화알루미늄 세라믹 보트 기판을 이용한 탄소마이크로 코일의 대량 합성)

  • Kim, Sung-Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.423-430
    • /
    • 2013
  • Carbon coils could be synthesized using $C_2H_2/H_2$ as source gases and $SF_6$ as an incorporated additive gas under thermal chemical vapor deposition (CVD) system. Prior to the carbon coils deposition reaction, two kinds of samples having different combination of Ni catalyst and substrate were employed, namely, a commercially-made $Al_2O_3$ ceramic boat with Ni powders and a commercially-made $Al_2O_3$ substrate with Ni layer. By using a commercially-made $Al_2O_3$ ceramic boat, the synthesis of carbon coils could be enhanced as much as 10 times higher than that of $Al_2O_3$ substrate. Furthermore, the dominant formation of the microsized carbon coils could be obtained by using $Al_2O_3$ ceramic boat. The surface roughness of the supporting substrate of $Al_2O_3$ ceramic boat was understood to be associated with the large scale synthesis of carbon coils as well as the dominant formation of the larger-sized, namely the microsized carbon coils.

Microstructure and Mechanical Properties of Al2O3/Fe-Ni Nanocomposite Prepared by Rapid Sintering (급속소결에 의해 제조된 Al2O3/Fe-Ni 나노복합재료의 미세조직 및 기계적 특성)

  • Lee, Young-In;Lee, Kun-Jae;Jang, Dae-Hwan;Yang, Jae-Kyo;Cho, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.203-208
    • /
    • 2010
  • A new High Frequency Induction Heating (HFIH) process has been developed to fabricate dense $Al_2O_3$ reinforced with Fe-Ni magnetic metal dispersion particles. The process is based on the reduction of metal oxide particles immediately prior to sintering. The synthesized $Al_2O_3$/Fe-Ni nanocomposite powders were formed directly from the selective reduction of metal oxide powders, such as NiO and $Fe_2O_3$. Dense $Al_2O_3$/Fe-Ni nanocomposite was fabricated using the HFIH method with an extremely high heating rate of $2000^{\circ}C/min$. Phase identification and microstructure of nanocomposite powders and sintered specimens were determined by X-ray diffraction and SEM and TEM, respectively. Vickers hardness experiment were performed to investigate the mechanical properties of the $Al_2O_3$/Fe-Ni nanocomposite.

The Impact of NiO on the Electrical Characteristics of AlGaN/GaN MOSHFET (NiO 게이트 산화막에 의한 AlGaN/GaN MOSHFET의 전기적 특성 변화)

  • Park, Yong Woon;Yang, Jeon Wook
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.511-516
    • /
    • 2021
  • The electrical characteristics of AlGaN/GaN/HEMT and MOSHFETs with NiO were studied. The threshold voltage of NiO MOSHFET revealed positive shift of +1.03 V than the -3.79 V of HEMT and negative shift of -1.73 V for SiO2 MOSHFET. Also, NiO MOSHFET showed better linearity in drain current corresponding to gate voltage and higher transconductance at positive gate voltage than the others. The response of gate pulse with base voltage of -5 V was different for both transistors as HEMT showed 20 % drain current decrease at the frequency range of 0.1 Hz~10 Hz and NiO MOSHFET decreased continuously above 10 Hz.

Hydrogen Production by Auto-thermal Reforming of Ethanol over $M/Al_2O_3$ (M = Mn, Fe, Co, Ni, Cu) Catalysts ($M/Al_2O_3$ (M = Mn, Fe, Co, Ni, Cu) 촉매 상에서 에탄올 자열개질반응에 의한 수소 제조)

  • Youn, Min-Hye;Seo, Jeong-Gil;Cho, Kyung-Min;Park, Sun-Young;Kim, Pil;Song, In-Kyu
    • Clean Technology
    • /
    • v.13 no.4
    • /
    • pp.287-292
    • /
    • 2007
  • [ $M/Al_2O_3$ ] (M = Mn, Fe, Co, Ni, Cu) catalysts supported on commercial alumina ($Al_2O_3$) were prepared by an impregnation method, and were applied to the hydrogen production by auto-thermal reforming of ethanol. It was revealed that each catalyst retained its own metallic phase and product distribution strongly depended on the identity of active metal. Among the catalysts prepared, $Ni/Al_2O_3$ and $Co/Al_2O_3$ showed the best catalytic performance in the auto-thermal reforming of ethanol. However, the reaction mechanisms over these two catalysts were different. Ni/Al_2O_3 catalyst showed 100% ethanol conversion at $500^{\circ}C$, but it exhibited a rapid decrease in hydrogen selectivity. Although $Co/Al_2O_3$ catalyst showed an excellent performance in hydrogen selectivity, on the other hand, no significant improvement in hydrogen yield was observed due to the low ethanol conversion over the catalyst.

  • PDF

Fabrication and Wear Behavior of Nano-sized Metal Particle Dispersed Al2O3 Nanocomposites (나노크기 금속입자가 분산된 Al2O3 나노복합재료의 제조 및 마모거동)

  • Oh Sung-Tag;Yoon Se-Joong;Jeong Young-Keun
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.503-507
    • /
    • 2005
  • Microstructure and wear behavior of A1203-based nanocomposites with Cu and Ni-Co dispersions were investigated. $Al_2O_3/Cu$ and $Al_2O_3/Ni-Co$ nanocomposites were fabricated by hydrogen reduction and sintering method using metal oxide and metal nitrates. The nanocomposites showed increased mechanical properties compared with monolithic $Al_2O_3$. In particular, high toughness and hardness were measured for the $Al_2O_3/Ni-Co$ nanocomposite consolidated by spark plasma sintering. A minimum value of wear coefficient comparable to the monolithic $Al_2O_3$ was obtained for $Al_2O_3/Ni-Co$ nanocomposite. Wear behavior is discussed in terms of microstructure and mechanical properties of nanocomposites

Effects of Base Metal on the Partial Oxidation of Methane Reaction (메탄의 부분산화반응에 미치는 Base metal의 영향)

  • 오영삼;장보혁;백영순;이재의;목영일
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.256-264
    • /
    • 1999
  • The performance of the Pt-B/cordierite catalysts (2 wt%) Pt, 70 wt% Alumina, 28 wt%) Ceria and Zirconia, B: base metal) loaded with 6∼12 wt% Mn, Cu, V, Co, Cr and Ba, respectively was studied for partial oxidation of methane reaction and compared with that of Ni loaded catalyst. As a results, it was found that Ba, Co, Cr as well as Ni loaded catalysts showed higher activity for methane partial oxidation of methane than the Mn, Cu and V loaded catalyst. But it was known that catalysts having good activity for methane showed the good activity for coke formation, too. A XRD analysis of the catalyst before and after the reaction using 5 wt% Ni/Al$_2$O$_3$) showed that there were three Ni phases. In these results, it was found that methane oxidation reaction occulted at the front of the catalyst bed consisted of NiAl$_2$O$_4$and NiO and reforming reaction occurred at the rear part of the catalyst bed consisted of reduced Ni.

  • PDF

Synthesis and Properties of Nano-sized Ni-Fe Alloy Particle Dispersed ${Al_2}{O_3}$Nanocomposite (나노크기 Ni-Fe 합금입자 분산${Al_2}{O_3}$ 나노복합재료의 합성 및 특성)

  • Nam, Gung-Seok;O, Seung-Tak;Lee, Jae-Seong;Jeong, Yeong-Geun;Kim, Hyeong-Seop
    • Korean Journal of Materials Research
    • /
    • v.11 no.11
    • /
    • pp.986-990
    • /
    • 2001
  • An optimum route to fabricate the $A1_2O_3/Fe-Ni$ alloy nanocomposites with sound microstructure and enhanced mechanical properties as well as magnetism was investigated. To prepare homogeneous nanocomposite powders of Fe-Ni alloy and $Al_2O_3$, the solution-chemistry routes using $Al_2O_3 \; Ni(NO_3)_2{\cdot}6H_2O$ and $Fe(NO_3)_3{\cdot}9H_2O$ powders were applied. Microstructural observation of the powder mixture revealed that the Fe-Ni alloy particles of about 20 nm in size were homogeneously surrounded $A1_2O_3$, forming nanocomposite powder. The hot-pressed composite showed improved fracture toughness and magnetic response. These results suggest that the synergy materials with an improved mechanical properties and excellent functionality can be fabricated by controlled powder preparation and consolidation processing.

  • PDF