KIPS Transactions on Software and Data Engineering
/
v.3
no.8
/
pp.321-328
/
2014
In this paper, we present a MapReduce-based mobility pattern mining system which can predict efficiently the next place of mobile users. It learns the mobility pattern model of each user, represented by Hidden Markov Models(HMM), from a large-scale trajectory dataset, and then predicts the next place for the user to visit by applying the learned models to the current trajectory. Our system consists of two parts: the back-end part, in which the mobility pattern models are learned for individual users, and the front-end part, where the next place for a certain user to visit is predicted based on the mobility pattern models. While the back-end part comprises of three distinct MapReduce modules for POI extraction, trajectory transformation, and mobility pattern model learning, the front-end part has two different modules for candidate route generation and next place prediction. Map and reduce functions of each module in our system were designed to utilize the underlying Hadoop infrastructure enough to maximize the parallel processing. We performed experiments to evaluate the performance of the proposed system by using a large-scale open benchmark dataset, GeoLife, and then could make sure of high performance of our system as results of the experiments.
In this paper, we propose strategies that eliminating packet loss and minimize delay time during handoff under wireless LAN environments. As a mobile host moves between cells, a handoff takes place. A few handoff protocol have been proposed to eliminate the packet loss, but they have a heavy overhead. So, We proposed handoff protocol using the next-cell prediction scheme that send not to current BS but to mobile host and next BS, therefore next BS buffered packet send mobile host after handoff. We also present simulation results for our simulation using the Network Simulator (ns2). The simulations show that our handoff scheme is no packet loss.
In this paper, we introduce a novel mobility model for mobile sinks in which the sinks move towards randomly distributed destinations, where each destination is associated with a mission. The novel mobility model is termed the random mobility with destinations. There have been many studies on mobile sinks; however, they merely support two extreme cases of sink mobility. The first case features the most common and general mobility, with the sinks moving randomly, unpredictably, and inartificially. The other case takes into account mobility only along predefined or determined paths such that the sinks can gather data from sensor nodes with minimum overhead. Unfortunately, these studies for the common mobility and predefined path mobility might not suit for supporting the random mobility with destinations. In order to support random mobility with destination, we propose a new protocol, in which the source nodes send their data to the next movement path of a mobile sink. To implement the proposed protocol, we first present a mechanism for predicting the next movement path of a mobile sink based on its previous movement path. With the information about predicted movement path included in a query packet, we further present a mechanism that source nodes send energy-efficiently their data along the next movement path before arriving of the mobile sink. Last, we present mechanisms for compensating the difference between the predicted movement path and the real movement path and for relaying the delayed data after arriving of the mobile sink on the next movement path, respectively. Simulation results show that the proposed protocol achieves better performance than the existing protocols.
The mobility prediction algorithm and the channel reservation scheme have been reported as an effective means to provide QoS guarantees and the efficient resource reservation in wireless networks. Among these prediction algorithms, the recently proposed Detailed-ZMHB algorithm makes use of the history of the user's positions within the current cell to predict the next cell, which provides the better prediction accuracy than the others. The handoff prioritizing schemes are proposed to provide improved performance at the expense of an increase in the blocking probability of new calls. In the soft handoff of the CDMA systems, a mobile can communicate via two adjacent cells simultaneously for a while before the actual handoff takes place. In this paper, we propose a new channel reservation scheme making use of the user mobility pattern information in order to reduce the call dropping probability. Our results show that the proposed scheme gives about 67.5-71.1$\%$ lower call dropping probability, compared to the existing scheme.
Transactions of the Korean Society for Noise and Vibration Engineering
/
v.12
no.5
/
pp.365-373
/
2002
This paper concerns the design and application of an electro-rheological (ER) fluid damper to semiactive vibration control of rotor systems. In particular, the system under present study is constructed structurally flexible in order to explore multiple critical speeds within operation range. To this end, the dynamic models of the proposed ER damper and its associated amplifier are derived in the first place. Subsequently entire rotor system model is assembled along with the dynamics of the end effector based on a finite element method enabling prediction as to its free and forced vibration characteristics. Next, an artificial intelligent (AI) feedback controller is synthesized taking into account the peculiarity of Coulomb damping effect in rotor applications. Finally, computational and experimental results are presented including model validation and control performances. In practice, such an AI control proved effective whether the spin speed was either before or after critical speeds.
Proceedings of the Korea Information Processing Society Conference
/
2014.04a
/
pp.777-780
/
2014
본 논문에서는 휴대용 기기 사용자들의 이동 궤적을 기록한 대용량의 GPS 위치 데이터 집합으로부터 각 사용자의 이동 패턴 모델을 학습해내고, 이 모델을 적용하여 각 사용자의 다음 방문 장소를 효율적으로 예측할 수 있는 맵리듀스 기반의 분산 데이터 마이닝 시스템을 소개한다. 본 시스템은 크게 사용자별 이동 패턴 모델을 학습하는 후단부와 실시간으로 다음 방문 장소를 예측하는 전단부로 구성된다. 이 중에서 후단부는 주요 장소 추출, 이동 궤적 변환, 이동 패턴 모델 학습 등 총 3개의 맵리듀스 작업 모듈들로 구성된다. 이에 반해, 본 시스템의 전단부는 이동 경로 후보군 생성, 다음 장소 예측 등 총 2개의 맵리듀스 작업 모듈들로 구성된다. 그리고 본 시스템을 구성하는 각각의 작어마다 분산처리를 극대화할 수 있도록 맵과 리듀스 함수를 설계하였다. 끝으로, 대용량의 GeoLife 벤치마크 데이터 집합을 이용하여 본 논문에서 소개한 시스템의 예측 성능을 분석하기 위한 실험을 수행하였고, 이를 통해 본 시스템의 높은 성능을 확인할 수 있었다.
This study examines market acceptance for DMB service, one of the touted new business models in Korea's next-generation mobile communications service market, using adoption end diffusion of innovation as the theoretical framework. Market acceptance for DMB service was assessed by predicting the demand for the service using the Bass model, and the demand variability over time was then analyzed by integrating the innovation adoption model proposed by Rogers (2003). In our estimation of the Bass model, we derived the coefficient of innovation and coefficient of imitation, using actual diffusion data from the mobile telephone service market. The maximum number of subscribers was estimated based on the result of a survey on satellite DMB service. Furthermore, to test the difference in diffusion pattern between mobile phone service and satellite DMB service, we reorganized the demand data along the diffusion timeline according to Rogers' innovation adoption model, using the responses by survey subjects concerning their respective projected time of adoption. The comparison of the two demand prediction models revealed that diffusion for both took place forming a classical S-curve. Concerning variability in demand for DMB service, our findings, much in agreement with Rogers' view, indicated that demand was highly variable over time and depending on the adopter group. In distinguishing adopters into different groups by time of adoption of innovation, we found that income and lifestyle (opinion leadership, novelty seeking tendency and independent decision-making) were variables with measurable impact. Among the managerial variables, price of reception device, contents type, subscription fees were the variables resulting in statistically significant differences. This study, as an attempt to measure the market acceptance for satellite DMB service, a leading next-generation mobile communications service product, stands out from related studies in that it estimates the nature and level of acceptance for specific customer categories, using theories of innovation adoption and diffusion and based on the result of a survey conducted through one-to-one interviews. The authors of this paper believe that the theoretical framework elaborated in this study and its findings can be fruitfully reused in future attempts to predict demand for new mobile communications service products.
Shi, Xiao-Jun;Au, William W.;Wu, Ku-Sheng;Chen, Lin-Xiang;Lin, Kun
Asian Pacific Journal of Cancer Prevention
/
v.15
no.6
/
pp.2785-2791
/
2014
Aims: To analyze time-dependent changes in female breast cancer (BC) mortality in China, forecast the trend in the ensuing 5 years, and provide recommendations for prevention and management. Materials and Methods: Mortality data of breast cancer in China from 1991 to 2011 was used to describe characteristics and distribution, such as the changes of the standardized mortality rate, urban-rural differences and age differences. Trend-surface analysis was used to study the geographical distribution of mortality. In addition, curve estimation, time series modeling, Gray modeling (GM) and joinpoint regression were performed to estimate and predict future trends. Results: In China, the mortality rate of breast cancer has increased yearly since 1991. In addition, our data predicted that the trend will continue to increase in the ensuing 5 years. Rates in urban areas are higher than those in rural areas. Over the past decade, all peak ages for death by breast cancer have been delayed, with the first death peak occurring at 55 to 65 years of age in urban and rural areas. Geographical analysis indicated that mortality rates increased from Southwest to Northeast and from West to East. Conclusions: The standardized mortality rate of breast cancer in China is rising and the upward trend is predicted to continue for the next 5 years. Since this can cause an enormous health impact in China, much better prevention and management of breast cancer is needed. Consequently, disease control centers in China should place more focus on the northeastern, eastern and southeastern parts of China for breast cancer prevention and management, and the key population should be among women between ages 55 to 65, especially those in urban communities.
The numerical simulations were conducted to investigate the thermal-fluid phenomena occurred inside the experimental apparatus during a PCCS, used to remove heat released in accidents from a containment of light water nuclear power plant, operation. Numerical simulations of the flow and heat transfer caused by wall condensation inside the containment simulation vessel (CSV), which equipped with 18 vertical heat exchanger tubes, were conducted using the commercial computational fluid dynamics (CFD) software ANSYS-CFX. Shear stress transport (SST) and the wall condensation model were used for turbulence closure and wall condensation, respectively. The simulation using the actual size of the apparatus. However, rather than simulating the whole experimental apparatus in consideration of the experimental cases, calculation resources, and calculation time, the simulation model was prepared only in CSV. Selective simulation was conducted to verify the effects of non-condensable gas(NC gas) concentration, CSV internal pressure, and wall sub-cooling conditions. First, as a result of the internal flow of CSV, it was observed that downward flow due to condensation occurred surface of the vertical tube and upward flow occurred in the distant place. Natural convection occurred actively around the heat exchanger tube. Due to this rising and falling internal flow, natural circulation occurred actively around the heat exchanger tubes. Next, in order to check the performance of built-in condensation model using according to the non-condensable gas concentration, CSV internal flow and wall sub-cooling, the heat flux values were compared with the experimental results. On average, the results were underestimated with and error of about 25%. In addition, the influence of CSV internal pressure and wall sub-cooling was small, but when the condensate was highly generated due to the low non-condensable gas concentration, the error was large compared to the experimental values. This is considered to be due to the nature of the condensation model of the CFX code. However, in spite of the limitations of CFD, it is valid to use the built-in condensation model of CFD for PCCS performance prediction from a conservative perspective.
This paper presents a robust deep learning-based human tracking framework in crowded environments. For practical human tracking applications, a target must be robustly tracked even in undetected or overcrowded situations. The proposed framework consists of two parts: robust deep learning-based human detection and tracking while recognizing the aforementioned situations. In the former part, target candidates are detected using Detectron2, which is one of the powerful deep learning tools, and their weights are computed and assigned. Subsequently, a candidate with the highest weight is extracted and is utilized to track the target human using a Kalman filter. If the bounding boxes of the extracted candidate and another candidate are overlapped, it is regarded as a crowded situation. In this situation, the center information of the extracted candidate is compensated using the state estimated prior to the crowded situation. When candidates are not detected from Detectron2, it means that the target is completely occluded and the next state of the target is estimated using the Kalman prediction step only. In two experiments, people wearing the same color clothes and having a similar height roam around the given place by overlapping one another. The average error of the proposed framework was measured and compared with one of the conventional approaches. In the error result, the proposed framework showed its robustness in the crowded environments.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.