배스(Micropterus salmoides)는 수생태계에서 최상위단계에 위치하는 생태계교란 어종으로 심각한 담수생태계의 불균형을 초래하고 있다. 배스의 퇴치 및 관리를 위한 다양한 시도를 하고 있지만 효과적인 방안은 없는 상황이므로 배스의 고유한 특성에 기반한 개체군 감소의 효율성을 극대화할 수 있는 방식을 모색하였다. 본 연구에서는 배스의 Transcriptom 분석으로 Unigene contigs는 182,887개, 그리고 정자-난자 인식 단백질인 IZUMO1과 Zona pellucida sperm-binding protein의 유전자에서 CRISPR/Cas9 system을 적용할 최종 Target sequence는 12종을 산출하였다. 각 Target sequence를 인식할 수 있는 12종의 sgRNA를 합성한 후 후속 연구에 사용할 12종의 Cas9-sgRNA ribonucleoprotein (RNP) complex를 제작하였다. 본 연구에서는 차세대염기서열 분석법으로 정자-난자 인식 단백질을 암호화하는 유전자를 탐색하였고, CRISPR/Cas9 system으로 유전자를 편집하여 번식행동은 하지만 수정란을 형성하지 못하는 생식세포를 생산하는 불임개체를 유도하기 위한 조성물 개발 과정을 확립하였다. 그리고 배스와 동일한 수계에 있는 고유 생물종의 서식에는 영향을 미치지 않는 생태교란종 관리 방안으로서의 유용성을 검증하기 위한 후속 연구의 귀중한 기초 자료를 확보하는데 기여했다고 판단된다.
차세대 무선 이동통신 시스템의 높은 서비스 품질을 위한 방법으로 MIMO-OFDM(Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing)방식이 주목받고 있다. 그러나 OFDM 시스템에서와 같이 큰 PAPR(Peak-to-Average Power Ratio)이 중요한 문제이다. 본 논문에서는 PAPR의 감소를 위해, 새로운 위상시퀀스를 기반으로 한 적응형 P-SLM(Partitioned-SeLective Mapping) 기법을 제안한다. 제안된 기법은 새로운위상 시퀀스를 주기적으로 곱하고, 일정한 PAPR 임계치를 이용한 적응성으로 인해 PAPR성능 향상뿐만 아니라 복잡도 또한 감소한다. 모의 실험 결과 제안된 기법이 기존의 기법보다 PAPR 성능 뿐만 아니라 복잡도 또한 감소한 것을 확인 할 수 있었다.
To assess the genetic diversity of Aconitum coreanum (Ranunculaceae) populations in Korea, we have amplified and sequenced eight organellar marker regions, and developed and analyzed microsatellite markers. No sequence variation was detected from the eight organellar markers. Ten microsatellites were developed using Next Generation Sequencing and two microsatellite markers, AK_CA03 and AK_CT07, were identified polymorphic and applied for 143 individuals of twelve A. coreanum populations. Four and five alleles were detected for the two microsatellite loci, respectively, and number of migrants ($N_m$) was estimated as 1.12586. Two microsatellite marker loci showed $F_{ST}$ of 0.205 and 0.275, respectively. The heterozygosity deficit, low level of among-population differentiation, small size of gene flow, and lack of sequence variation of the organellar markers suggest that A. coreanum is reproductively isolated from other Aconitum species and there has been continuous gene flow among the populations of A. coreanum or it has dispersed relatively recently after speciation. Though population pairwise $F_{ST}$'s presented significant geographic structure, further sampling and study will be necessary to confirm this.
Genetic assessments of rare and endangered species are among the first steps necessary to establish the proper management of natural populations. Transcriptome-derived single-sequence repeat markers were developed for the Korean endangered species Astilboides tabularis (Saxifragaceae) to assess its genetic diversity. A total of 96 candidate microsatellite loci were isolated based on transcriptome data using Illumina pair end sequencing. Of these, 26 were polymorphic, with one to five alleles per locus in 60 individuals from three populations of A. tabularis. The observed and expected heterozygosity per locus ranged from 0.000 to 0.950 and from 0.000 to 0.741, respectively. These polymorphic transcriptome-derived simple sequence repeat markers would be invaluable for future studies of population genetics and for ecological conservation of the endangered species A. tabularis.
일반적인 IP 네트워크에서 이동성을 보장해 주는 대표적인 기술인 Mobile IP 에서는 핸드오버에 따른 패킷 유실의 문제를 피할 수 없다. 따라서 이러한 패킷 유실의 문제를 해결하기 위한 대안으로 Smooth Handover가 제시 되었다. 하지만 Smooth Handover의 경우 핸드오버 동안의 패킷 버퍼링과 핸드오버에 따른 패킷 순서 뒤바뀜의 문제가 발생하고 결과적으로 전체 네트워크의 성능이 감소하는 결과를 초래한다. 차세대 휴대 인터넷 기술인 WiBro(High-speed Portable Internet) 시스템에서도 역시 서비스 중인 단말이 핸드 오버 시 동일한 문제가 발생한다. 특히 WiBro 시스댐은 휴대성과 이동성을 보장하고 IEEE 802.16 표준을 기반으로 서비스 클래스에 따른 차별적인 서비스를 제공한다. 따라서 패킷 유실 및 순서 뒤바뀜 문제를 해결하는 핸드 오버 메커니즘이 휴대인터넷에서 필요 하다. 본 논문에서는 WiBro 시스템에서 패킷 유실 및 패킷 순서 뒤바뀜 문제를 해결하는 알고리즘과 핸드오버 메커니즘을 제안한다.
본 연구는 사육환경 조건에서 참수리(Haliaeetus pelagicus)의 연령에 따른 꼬리깃의 변화 과정을 조사하기 위해서 2000년 11월부터 2006년 7월까지 약 6년간 경성대학교 조류연구소에서 조사한 것이다. 꼬리깃의 깃갈이 시기는 보통 7월부터 시작해 익년 4월까지 진행되었으며, 1회의 깃갈이에 모든 깃이 교체되었다. 보통 12월 이전에 2/3 정도가 교체되었으며, 나머지는 익년 4월까지 모두 교체되었는데, 겨울동안에도 깃갈이가 지속되었다. 꼬리깃의 총 개수는 14개로써 깃갈이는 번갈아가면서 단계적으로 이루어졌고 암컷은 4단계, 수컷은 3단계로 진행되었는데 각 단계마다 좌.우측 깃이 대칭적으로 진행되는 것이 특징이었고 한 단계의 성장이 거의 끝날 때 다음단계가 시작되었다. 유조 꼬리깃의 빛깔은 흰색 바탕에 검은색 얼룩이 산재해 있고 깃의 끝부분에는 불규칙적인 검은색 띠가 있었는데 1-3세대깃(1-3차 여름깃)까지는 빛깔의 차이가 극히 적어 꼬리깃으로만 연령을 파악하기는 어려웠다. 또한 개체별로 나타나는 검은색 얼룩무늬의 양도 다르다는 것을 고려했다. 4세대 깃(4차 여름깃)은 3세대 깃에 비해서 큰 차이를 보이며 흰색깃에 약간의 검은색 얼룩만 존재하였다. 4차 깃갈이가 끝난 5세대 깃(5차 여름깃)은 순 백색의 완전한 성조 꼬리깃의 빛깔을 갖추었다. 야외에서 참수리를 관찰하였을 때 3세대 깃(3차 여름깃)까지는 연령을 판단하는데 신중한 검토가 필요하며 꼬리깃 외에 다른 부위의 깃 변화도 함께 관찰해야 할 것으로 생각한다.
With the advent of the genomics era powered by DNA sequencing technologies, life science is being transformed significantly and biological research and development have been accelerated. Environmental biology concerns the relationships among living organisms and their natural environment, which constitute the global biogeochemical cycle. As sustainability of the ecosystems depends on biodiversity, examining the structure and dynamics of the biotic constituents and fully grasping their genetic and metabolic capabilities are pivotal. The high-speed high-throughput next-generation sequencing can be applied to barcoding organisms either thriving or endangered and to decoding the whole genome information. Furthermore, diversity and the full gene complement of a microbial community can be elucidated and monitored through metagenomic approaches. With regard to human welfare, microbiomes of various human habitats such as gut, skin, mouth, stomach, and vagina, have been and are being scrutinized. To keep pace with the rapid increase of the sequencing capacity, various bioinformatic algorithms and software tools that even utilize supercomputers and cloud computing are being developed for processing and storage of massive data sets. Environmental genomics will be the major force in understanding the structure and function of ecosystems in nature as well as preserving, remediating, and bioprospecting them.
차세대 시퀀싱(NGS)은 암에서 전사체 싱글 뉴클레오티드 변형 발견과 모든 지놈 발견을 가능하게 한다. 어느 한 위치에서 배열된 다수의 짧은 리드 시퀀스로부터 개인의 유전자형을 결정하는 가장 기초적인 방법이다. Byesian 알고리즘은 사후 유전자형 확률을 사용하여 파라미터 추정한다. 또 다른 방법인 EM 알고리즘은 최대 가능성 추정 방법을 사용해서 관측된 데이터에서 파라미터를 추정한다. 본 논문에서는 새로운 유전자형 조사 시스템을 제안하고 시퀀싱 에러 비율과 체세포 돌연 변이 상태 그리고 유전자형 확률의 사후 추정치에 관한 샘플 크기(S = 50, 100, 500)의 영향을 비교 분석하였다. 그 결과 작은 샘플 크기 50에서도 Byesian 알고리즘을 사용하여 추정한 파라미터가 EM 알고리즘 보다 더 정확하게 실제 파라미터에 근접하였다.
Park, Sehhoon;Lee, Chung;Ku, Bo Mi;Kim, Minjae;Park, Woong-Yang;Kim, Nayoung K.D.;Ahn, Myung-Ju
BMB Reports
/
제54권7호
/
pp.386-391
/
2021
Owing to rapid advancements in NGS (next generation sequencing), genomic alteration is now considered an essential predictive biomarkers that impact the treatment decision in many cases of cancer. Among the various predictive biomarkers, tumor mutation burden (TMB) was identified by NGS and was considered to be useful in predicting a clinical response in cancer cases treated by immunotherapy. In this study, we directly compared the lab-developed-test (LDT) results by target sequencing panel, K-MASTER panel v3.0 and whole-exome sequencing (WES) to evaluate the concordance of TMB. As an initial step, the reference materials (n = 3) with known TMB status were used as an exploratory test. To validate and evaluate TMB, we used one hundred samples that were acquired from surgically resected tissues of non-small cell lung cancer (NSCLC) patients. The TMB of each sample was tested by using both LDT and WES methods, which extracted the DNA from samples at the same time. In addition, we evaluated the impact of capture region, which might lead to different values of TMB; the evaluation of capture region was based on the size of NGS and target sequencing panels. In this pilot study, TMB was evaluated by LDT and WES by using duplicated reference samples; the results of TMB showed high concordance rate (R2 = 0.887). This was also reflected in clinical samples (n = 100), which showed R2 of 0.71. The difference between the coding sequence ratio (3.49%) and the ratio of mutations (4.8%) indicated that the LDT panel identified a relatively higher number of mutations. It was feasible to calculate TMB with LDT panel, which can be useful in clinical practice. Furthermore, a customized approach must be developed for calculating TMB, which differs according to cancer types and specific clinical settings.
Shin, Jiwon;Kim, Bo-Ra;Guevarra, Robin B.;Lee, Jun Hyung;Lee, Sun Hee;Kim, Young Hwa;Wattanaphansak, Suphot;Kang, Bit Na;Kim, Hyeun Bum
농업과학연구
/
제45권4호
/
pp.655-663
/
2018
The insect gut microbiome is known to have important roles in host growth, development, digestion, and resistance against pathogens. In addition, the genetic diversity of the insect gut microbiota has recently been recognized as potential genetic resources for industrial bioprocessing. However, there is limited information regarding the insect gut microbiota to better help us understand their potential benefits for enhanced pig production. With the development of next-generation sequencing methods, whole genome sequence analysis has become possible beyond traditional culture-independent methods. This improvement makes it possible to identify and characterize bacteria that are not cultured and located in various environments including the gastrointestinal tract. Insect intestinal microorganisms are known to have an important role in host growth, digestion, and immunity. These gut microbiota have recently been recognized as potential genetic resources for livestock farming which is using the functions of living organisms to integrate them into animal science. The purpose of this literature review is to emphasize the necessity of research on insect gut microbiota and their applicability to pig production or bioindustry. In conclusion, bacterial metabolism of feed in the gut is often significant for the nutrition intake of animals, and the insect gut microbiome has potential to be used as feed additives for enhanced pig performance. The exploration of the structure and function of the insect gut microbiota needs further investigation for their potential use in the swine industry particularly for the improvement of growth performance and overall health status of pigs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.