• Title/Summary/Keyword: Next Generation Aircraft

Search Result 48, Processing Time 0.038 seconds

A Study on the Application of Analytic Hierarchy Process to the selection of Fighter Plane (계층화의사결정법(AHP)을 이용한 전투기의 기종선정에 관한 연구)

  • Eun, Hee-Bong;Kim, Bong-Sun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.6 no.1
    • /
    • pp.51-69
    • /
    • 1998
  • This paper was studied to present a model for the application of AHP to the selection of fighter planes. For this study, a questionnaire was developed in respect to the criteria of fighter plane and given to 70 reserved officers who had experienced as fighter pilots in Republic of Korean Air Force (ROKAF) to ask their opinions about the candidates for the next-generation fighter planes of the ROKAF. The AHP software developed by Korean Advanced Institute of Science Technology (KAIST) was used to process the data. The result was analyzed by the criteria of selecting military aircraft and the several alternatives for the next-generation fighter planes.

  • PDF

A Study on the Architecture for Avionics System of Jet Fighters (제트 전투기의 항공전자 시스템 아키텍처에 관한 연구)

  • Gook, Kwon Byeong;Won, Son Il
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.86-96
    • /
    • 2022
  • The development trend of jet fighter's avionics system architecture is the digitization of subsystem component functions, increased RF sensor sharing, fiber optic channel networks, and modularized integrated structures. The avionics system architecture of the fifth generation jet fighters (F-22, F-35) has evolved into an integrated modular avionics system based on computing function integration and RF integrated sensor systems. The integrated modular avionics system of jet fighters should provide improved combat power, fault tolerance, and ease of jet fighter control. To this aim, this paper presents the direction and requirements of the next-generation jet fighter's avionics system architecture through analysis of the fifth generation jet fighter's avionics system architecture. The core challenge of the integrated modularized avionic system architecture requirements for next-generation fighters is to build a platform that integrates major components and sensors into aircraft. In other words, the architecture of the next-generation fighters is standardization of systems, sensor integration of each subsystem through open interfaces, integration of functional elements, network integration, and integration of pilots and fighters to improve their ability to respond and control.

Recent trends in advanced flight control

  • Kanai, Kimio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.24.1-24
    • /
    • 1996
  • The development of future aircraft that involves the expanded flight envelop will place increased performance requirements on the design of the flight control system. Maneuvering areas are expanding into flight envelopes characterized by significantly larger levels of modeling uncertainty than encountered in present flight control designs. Conventional flight control techniques that ignore the effects of large parameter variations, modeling uncertainties and nonlinearities, will likely produce designs with poor performance and robustness. Recent advances in modern control theories called advanced control theories, most notably the H$\_$.inf./ synthesis technique, adaptive control and neural network application, offer the promise of a design technique that can produce both high performance and robust controllers for next generation aircraft. This special lecture will survey the recent development in advanced flight control and review the possible application of advanced control theories.

  • PDF

The Study on the Security Requirement at Aeronautical Telecommunication Network (항공통신망에서의 보안 요구사항에 관한 연구)

  • Kim, Do-Woo;Lee, Seoung-Hyeon;Lee, Deok-Gyu;Han, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.628-631
    • /
    • 2008
  • The information transfer between the ground facilities and the ground facilities and exchange are necessary for an aircraft and ground facilities so that it is safe, it is economic, an aircraft tan operate an aircraft to the high efficiency until it arrives at the destination location from the stand-by for the fly. Presently, by using the AFTN which is closed network, a communication is made. However, by applying the leading edge communication technology, the aeronautical telecommunication network of the next generation is constructed and it is planning to be managed. Due to this, the ground facilities connected to the foreign network has the security vulnerability by an attack. Therefore, the vulnerability analysis for the safe operational environment build-up at the aeronautical telecommunication network and sorority requirement research are needed.

  • PDF

Design on High Efficiency and Light Composite Propeller Blade of High Speed Turboprop Aircraft (고속 터보프롭 항공기용 고효율 경량화 복합재 프로펠러 블레이드 설계 연구)

  • Kong, Chang-Duk;Lee, Kyung-Sun;Park, Hyun-Bum;Choi, Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.3
    • /
    • pp.57-68
    • /
    • 2012
  • In this study, designs of the high efficiency composite propeller blade for a high speed turboprop aircraft, which will be used for a next generation regional commercial aircraft in Korea, are performed. Both the vortex theory and the blade element theory are used for preliminary aerodynamic design and performance analysis of the propeller. Then the aerodynamic design result is confirmed through performance analysis using a commercial CFD code, ANSYS. The carbon/epoxy composite materials is used, and the skin-spar-foam sandwich type structure is adopted for improvement of lightness and structural stability. Finally, it is investigated that the proposed propeller blade has high efficiency and structural safety through both aerodynamic and structural analysis and experimental test of a prototype propeller blade.

Design on High Efficiency and Light Composite Propeller Blade of Regional Aircraft (중형항공기급 고효율 경량화 복합재 프로펠러 블레이드 설계 연구)

  • Kong, Chang-Duk;Lee, Kyung-Sun;Park, Hyun-Bum;Choi, Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.253-258
    • /
    • 2012
  • In this study, designs of the high efficiency composite propeller blade for a high speed turboprop aircraft, which will be used for a next generation regional commercial aircraft in Korea, are performed. Both the vortex theory and the blade element theory are used for preliminary aerodynamic design and performance analysis of the propeller. Then the aerodynamic design result is confirmed through performance analysis using a commercial CFD code, ANSYS. The carbon/epoxy composite materials is used, and the skin-spar-foam sandwich type structure is adopted for improvement of lightness and structural stability. Finally, it is investigated that the proposed propeller blade has high efficiency and structural safety through both aerodynamic and structural analysis and experimental test of a prototype propeller blade.

  • PDF

A Study for the Optimal Development Strategy of Air Cargo in Size and AHP Survey Analysis of Each Potential Decision-Making Group (한국형 전술수송기의 적정 개발 규모와 의사결정 영향집단별 AHP조사 분석에 관한 연구)

  • Jung, Byung-Ho;Kim, Ik-Ki
    • Journal of the military operations research society of Korea
    • /
    • v.34 no.3
    • /
    • pp.31-40
    • /
    • 2008
  • The aircraft manufacturing industry is a profitable business and has the potential to be an important export business. Our trade deficit needs to be improved in aircraft manufacturing part. Our national aircraft industry, which has been recognized for its quality in many domestic and international Air Shows, has developed the T/A-50 aircraft from the origins of the KT-1. With the ongoing development of the next generation fighter planes and helicopters, business for the next generation domestic air cargo has bright prospects. Judging by the history of the overseas air force dispatch during the Vietnam, Gulf, and Iraqi wars whose main mission was air transportation, there will be many opportunities to show the excellence of Korean air cargo in the future. The purpose of this study is to discover the optimal scale of air cargo development using the AHP method. The authors evaluated the scale of air cargo in size and capacity based on the following 5 standards used Korean developing airliner: usability, economics, technology, safety, and environmental friendliness. Then, the authors modified specific standards suitable for air cargo based on literature review Decision-making groups were chosen for suitability of expert staff in charge because they could represent for leading opinions in this specialized area especially as in practical aspects. The participants of the evaluation were pilots, transportation officers and management staff in the KAI who have experienced over 5years.

Security Problems in Aircraft Digital Network System and Cybersecurity Strategies (항공기 디지털 네트워크 시스템 보안 문제점과 사이버 대응 전략)

  • Lim, In-Kyu;Kang, Ja-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.633-637
    • /
    • 2017
  • Cyber attacks on aircraft and aeronautical networks are not much different from cyber attacks commonly found in the ground industry. Air traffic management infrastructure is being transformed into a digital infrastructure to secure air traffic. A wide variety of communication environments, information and communications, navigation, surveillance and inflight entertainment systems are increasingly threatening the threat posed by cyber terrorism threats. The emergence of unmanned aircraft systems also poses an uncontrollable risk with cyber terrorism. We have analyzed cyber security standards and response strategies in developed countries by recognizing the vulnerability of cyber threats to aircraft systems and aviation infrastructure in next generation data network systems. We discussed comprehensive measures for cybersecurity policies to consider in the domestic aviation environment, and discussed the concept of security environment and quick response strategies.

Development of Scheduling System for Trajectory Based Air Traffic Management (궤적 기반의 항공 교통 관리를 위한 스케줄링 시스템 개발)

  • Oh, Eun-Mi;Eun, Yeonju;Kim, Hyounkyoung;Jeon, Daekeun
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.367-374
    • /
    • 2018
  • A trajectory-based scheduling system is proposed for air traffic management using next generation aviation data communication link. Based on the service concept of 4-dimensional trajectory data link (4DTRAD) using air traffic serveices (ATS) datalink Baseline 2, a procedure for trajectory-based operation of an en-route flight is established and described in detail. To mitigate air traffic controllers' workload which might be caused by various and complicated data utilization, a prototype of the scheduling system, which predicts the aircraft trajectory based on the flight intents received by air traffic service system and provides advisory information for air traffic control, was developed. The simulation environment for trajectory based operation was built to validate the scheduling functionality of the prototype.

Aerodynamic Analysis, Required Power and Weight Estimation of a Compound (Tilt rotor + Lift + Cruise) Type eVTOL for Urban Air Mobility using Reverse Engineering Techniques (역설계 기법을 사용한 도심항공 모빌리티용 복합형(틸트로터 + 양력 + 순항) eVTOL의 공력 해석, 요구 동력 및 중량 예측)

  • Kim, Dong-Hee;Lee, Joon-Hee;Hwang, Ho-Yon
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.17-28
    • /
    • 2021
  • Recently, eVTOL, the next-generation of eco-friendly transportation, has been in the spotlight due to global warming along with traffic jams in large cities of many countries. This study benchmark the external features of Hyundai Motors S-A1, a compound eVTOL combined fixed and tilt rotors among many types of eVTOLs, to create the basic configuration using reverse design techniques. Basic configurations were created using CATIA and aerodynamic analyses were performed using the aircraft design and aerodynamic analysis programs, OpenVSP, XFLR5, and the aircraft wetted area, drag, and lift were calculated after selecting the airfoil, incidence angle, and dihedral and anhedral angles through trade study. Also, required powers were estimated for completing the given mission profile and components weight and the total weight were predicted using the estimation formula and data survey.