• Title/Summary/Keyword: Newton-raphson

Search Result 591, Processing Time 0.031 seconds

A Predicted Newton-Raphson Iterative Method utilizing Neural Network (신경회로망을 이용한 예측 뉴턴-랩손 반복계산기법)

  • Kim, Jong-Hoon;Kim, Yong-Hyup
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.339-344
    • /
    • 2000
  • Newton-Raphson 기법은 구조물의 비선형 해석에 널리 쓰이는 반복계산기법이다. 비선형 해석을 위한 반복계산기법은 컴퓨터의 발달을 감안해도 상당한 계산시간이 소요된다. 본 논문에서는 신경회로망 예측을 사용한 Predicted Newton-Raphson 반복계산기법을 제안하였다. 통상적인 Newton-Raphson 기법은 이전스텝에서 수렴된 점으로부터 현재 스텝의 반복계산을 시작하는 반면 제시된 방법은 현재 스텝 수렴해에 대한 예측점에서 반복계산을 시작한다. 수렴해에 대한 예측은 신경회로망을 사용하여 이전 스텝 수렴해의 과거경향을 파악한 후 구한다. 반복계산 시작점이 수렴점에 보다 근접하여 위치하므로 수렴속도가 빨라지게 되고 허용되는 하중스텝의 크기가 커지게 된다. 또한 반복계산의 시작점으로부터 이루어지는 계산과정은 통상적인 Newton-Raphson 기법과 동일하므로 기존의 Newton-Raphson 기법과 정확히 일치하는 수렴해를 구할 수 있다. 구조물의 정적 비선형 거동에 대한 수치해석을 통하여 modified Newton-Raphson 기법과 제시된 Predicted Newton=Raphson 기법의 정확성과 효율성을 비교하였다. 제시된 Predicted Newton-Raphson 기법은 modified Newton-Raphson 기법과 동일한 해를 산출하면서도 계산상의 효율성이 매우 큼을 확인할 수 있었다.

  • PDF

Initial Point Optimization for Square Root Approximation based on Newton-Raphson Method (Newton-Raphson 방식의 제곱근 근사를 위한 초기값의 최적화)

  • Choi Chang-Soon;Lee Jin-Yong;Kim Young-Lok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.3 s.345
    • /
    • pp.15-20
    • /
    • 2006
  • A Newton-Raphson Method for table driven algorithm is presented in this paper. We concentrate the approximation of square root by using Newton-Raphson method. We confirm that this method has advantages of accurate and fast processing with optimized initial point. Hence the selection of the fitted initial points used in approximation of Newton-Raphson algorithm is important issue. This paper proposes that log scale based on geometric wean is most profitable initial point. It shows that the proposed method givemore accurate results with faster processing speed.

Structural Damage Identification by Using the Spectral Element Model and the Newton-Raphson Method (스텍트럴요소 모델과 Newton-Raphson 법을 이용한 구조손상규명)

  • Kim, Jung-Soo;Kwon, Kyung-Soo;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.921-926
    • /
    • 2004
  • In this paper, a nonlinear structural damage identification algorithm is derived by taking into account the non-linearity of damage. The structural damage identification analyses are conducted by using the direct method and the Newton-Raphson method. It is found that, the Newton-Raphson method in general provides the better damage identification results when compared with the results obtained by the direct method.

  • PDF

Quasi-Steady Model of Newton-Raphson Form for Natural Rivers (자연하천에 대한 Newton-Raphson 형태의 준정상류 계산모형)

  • Kim, Jin-Soo;Jun, Kyung-Soo;Yoon, Byung-Man;Woo, Hyo-Seop
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.640-644
    • /
    • 2008
  • 하상경사가 커서 동수역학적 부정류 계산모형을 안정적으로 적용하기 어렵고, 홍수파의 감쇄효과가 적은 중소하천에 적합한 준정상류 계산모형을 개발하였다. 수립된 모형은 매 시각 유량에 대하여 1차원 하천 부등류 지배방정식인 단면 평균된 1차원 에너지 방정식을 풀도록 구성되어 있으며, 수치해법으로는 Newton-Raphson 방법을 적용한 표준축차법을 사용하였다. Newton-Raphson 방법을 적용하기 위해서는 통수면적, 하폭, 윤변, 동수반경 및 수위에 대한 윤변의 변화율 등의 변수들이 필요하다. 이와 같은 변수들은 각 계산점에서 수위를 계산하기에 앞서 단면자료를 사용하여 0.1 m 간격으로 모든 수위에 대하여 그 값들을 미리 구한 후, 반복 계산 단계에서 사용되는 수위에 대하여 필요한 변수들을 앞서 계산된 변수들과 선형 보간하여 사용하도록 하였다. 하천 구간내에 보가 존재하는 경우에는 보가 위치한 상 하류 간의 지배방정식으로 에너지 방정식 대신에 월류 유량 관계식을 사용하였으며, 이때의 수치해법 역시 Newton-Raphson 방법을 사용하였다. 수립된 모형을 한탄강 하류 구간에 적용하여 HEC-RAS 모형과 모의 결과를 비교한 결과, 두 모형의 계산결과가 잘 일치하는 것으로 나타났다. 에너지 경사항의 근사 방법에 따른 민감도 분석을 실시하였다.

  • PDF

Quadratic Newton-Raphson Method for DC and Transient Analyses of Electronic Circuits (電子回路의 DC 및 過渡解析을 위한 2次 Newton-Raphson 方法)

  • Jun, Young-Hyun;Lee, Ki-Jun;Park, Song-Bai
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.1
    • /
    • pp.122-128
    • /
    • 1989
  • In this paper we propose a new method for solving a set of nonlinear algebraic equations encountered in the DC and transient analyses of electronic circuits. This method will be called Quadratic Newton-Raphson Method (QNRM), since it is based on the Newton-Raphson Method (NRM) but effectively takes into accoujnt the second order derivative terms in the Taylor series expansion of the nonlinear algebraic equations. The second order terms are approximated by linear terms using a carefully estimated solution at each iteration. Preliminary simulation results show that the QNRM saves the overall computational time significantly in the DC and transient analysis, compared with the conventional NRM.

  • PDF

Time Variant Parameter Estimation using RLS Algorithm with Adaptive Forgetting Factor Based on Newton-Raphson Method (Newton-Raphson법 기반의 적응 망각율을 갖는 RLS 알고리즘에 의한 원격센서시스템의 시변파라메타 추정)

  • Kim, Kyung-Yup;Lee, Joon-Tark
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.435-439
    • /
    • 2007
  • This paper deals with RLS algorithm using Newton-Raphson method based adaptive forgetting factor for a passive telemetry RF sensor system in order to estimate the time variant parameter to be included in RF sensor model. For this estimation with RLS algorithm, phasor typed RF sensor system modelled with inductive coupling principle is used. Instead of applying constant forgetting factor to estimate time variant parameter, the adaptive forgetting factor based on Newton-Raphson method is applied to RLS algorithm without constant forgetting factor to be determined intuitively. Finally, we provide numerical examples to evaluate the feasibility and generality of the proposed method in this paper.

  • PDF

Shape and location estimation using prior information obtained from the modified Newton-Raphson method

  • Jeon, H.J.;Kim, J.H.;Choi, B.Y.;Kim, M.C.;Kim, S.;Lee, Y.J.;Kim, K.Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.570-574
    • /
    • 2003
  • In most boundary estimation algorithms estimation in EIT (Electrical Impedance Tomography), anomaly boundaries can be expressed with Fourier series and the unknown coefficients are estimated with proper inverse algorithms. Furthermore, the number of anomalies is assumed to be available a priori. The prior knowledge on the number of anomalies may be unavailable in some cases, and we need to determine the number of anomalies with other methods. This paper presents an algorithm for the boundary estimation in EIT (Electrical Impedance Tomography) using the prior information from the conventional Newton-Raphson method. Although Newton-Raphson method generates so poor spatial resolution that the anomaly boundaries are hardly reconstructed, even after a few iterations it can give general feature of the object to be imaged such as the number of anomalies, their sizes and locations, as long as the anomalies are big enough. Some numerical experiments indicate that the Newton-Raphson method can be used as a good predictor of the unknown boundaries and the proposed boundary discrimination algorithm has a good performance.

  • PDF

A Study on the load Flow Calculation for preserving off Diagonal Element in Jacobian Matrix (Jacobian 행렬의 비 대각 요소를 보존시킬 수 있는 조류계산에 관한 연구)

  • 이종기;최병곤;박정도;류헌수;문영현
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1081-1087
    • /
    • 1999
  • Load Flow calulation methods can usually be divided into Gauss-Seidel method, Newton-Raphson method and decoupled method. Load flow calculation is a basic on-line or off-line process for power system planning. operation, control and state analysis. These days Newton-Raphson method is mainly used since it shows remarkable convergence characteristics. It, however, needs considerable calculation time in construction and calculation of inverse Jacobian matrix. In addition to that, Newton-Raphson method tends to fail to converge when system loading is heavy and system has a large R/X ratio. In this paper, matrix equation is used to make algebraic expression and then to slove load flow equation and to modify above defects. And it preserve P-Q bus part of Jacobian matrix to shorten computing time. Application of mentioned algorithm to 14 bus, 39 bus, 118 bus systems led to identical results and the same numbers of iteration obtained by Newton-Raphson method. The effect of computing time reduction showed about 28% , 30% , at each case of 39 bus, 118 bus system.

  • PDF