• Title/Summary/Keyword: Newton formula

Search Result 51, Processing Time 0.025 seconds

A Study on the Snap-through Behaviour According to the Initial Deflection Shape of Plate Members (초기처짐형상에 따른 판부재의 천이거동에 관한 연구)

  • 고재용;이계희;박주신
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.348-356
    • /
    • 2003
  • Recently, the buckling is easy to happen a thin plate and High Tensile Steel is used at the steel structure and marine structure so that it is wide. Especially, the post-buckling is becoming important design criteria in the ship structure to use especially the High Tensile Steel. Consequently, it is important that we grasp the conduct post-buckling behaviour accurately at the stability of the ship structure or marine structure. In this study, examined closely about conduct and snap-through behaviour after initial buckling of thin plate structure which apply compressive load according to various kinds initial deflection shape under all edges simply supported condition that make by buckling formula in each payment in advance rule to place which is representative construction of hull. Analysis method is F.E.M in used ANSYS program and complicated nonlinear behaviour to analyze such as secondary buckling with snap-through behaviour. Nonlinear buckling control is applied between newton-raphson method and arc-length method in this study

  • PDF

A new formulation for unsteady heat transfer of oscillatory flow in a circular tube (원관내 왕복유동에서 비정상 열전달 관계식의 공식화)

  • Park, Sang-Jin;Lee, Dae-Yeong;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2953-2964
    • /
    • 1996
  • Heat Transfer with periodic fluctuation of fluid temperature caused by oscillatory flow or compression expansion can be out of phase with balk fluid-wall temperature difference. Newton's law of convection is inadequate to describe this phenomenon. In order to solve this problem the concept of the complex Nusselt number has been introduced by severla researchers. The complex Nusselt number expresses out of phase excellently while the first harmonic is dominant in the variations of both fluid-wall temperature difference and heat flux. However, in the case of oscillatory flow with non-linear wall temperature distribution, the complex Nusselt number is not appropriate to predict the heat transfer phenomena since the higher order harmonic components appear in periodic temperature variation. Analytic solutions to the heat transfer with an sinusoidal well temperature distribution were obtained to investagate the effect of non-linear wall temperature distribution. A new formula considering the thermal boundary layer was suggested based on the solutions. A comparison was also made with the complex Nusselt number. It was verified that the new formula describes well the heat transfer of oscillating flow even if the first harmonic component is not dominant in the fluid-wall temperature difference.

The algorithm of the load flow problem for integrated distributed generation network (분산전원의 특성을 고려한 조류계산의 새로운 알고리즘 고찰)

  • Nguyen, Dinh Hung;Nguyen, Minh Y.;Nguyen, Van Thang;Kim, Tae-Won;Kim, Kern-Joong;Yoon, Yong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.168-169
    • /
    • 2011
  • The aim of this paper is to present a new algorithm for the load flow problem using modified Newton-Raphson (NR) iteration method and a approach to derive a simple formula to compensate the reactive power at some heavy load bus. The reactive power source used in this research is the DG which is adjacent to the heavy load. Phenomena of low voltages may cause the load flow calculation process to diverge. In modified NR method, low voltages will be detected and corrected before the next iteration. Therefore, the results of load flow calculation process satisfy the voltage constraint i.e. higher than the lower voltage limit or higher than the critical voltage in case the conventional load flow diverges. Linearizing the power network using PTDFs is a simple method with accepted errors. A new value of voltage at the DG terminal is computed in terms of the voltage deviation of load buses. In this approach, solving the entire system is unnecessary.

  • PDF

Automotive Windshield Wiper Linkage Dynamic Modeling for Vibration Analysis (자동차 와이퍼 링키지의 진동해석을 위한 동역학 모델링)

  • Lee, Byoung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.465-472
    • /
    • 2008
  • An automotive windshield wiper system is modeled mainly for vibration analysis purpose. The model is composed of solid links, ideal joints, imperfect joints to simulate unavoidable manufacturing defects and bushings having stiffness, contact between a wiper blade and a wind screen glass, friction, a spring and an actuator. Main stream of wiper dynamics analysis has been obtaining a closed form of system of equations using Newton's or Lagrange's formula and doing a numerical simulation study to understand and predict the behavior of it. However, the modeling process is complex since a wiper system is of multibody and a contact problem occurs. When imperfection, such as dead zone of a joint and stiffness of a rubber bushing, should be included, the added complexity makes the modeling difficult. Since the imperfection is understood as main cause of problematic vibration, the dynamics model of a wiper system aiming vibration analysis should include such unavoidable manufacturing defects in the model. An open form of dynamic model of a automotive windshield wiper system with imperfect joints using a commercial software is obtained and a simulation analyssis is conducted for vibration reduction study.

A Study on Efficient Calculation of Effective Reactive Power Reserves Using Sensitivity Analysis

  • Bae, Moonsung;Lee, Byongjun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1689-1696
    • /
    • 2017
  • In recent academic and industrial circles of the Republic of Korea, the securement of available reactive power reserve against the line faults is at issue. Thus, simulations have been performed for the securing of effective reactive power reserve (effective Q) to prepare for the line faults and improve reactive power monitoring and control methods. That is, a research has been conducted for the fast-decoupled Newton-Raphson method. In this study, a method that distinguishes source and sink regions to carry out faster provision of information in the event of line fault has been proposed. This method can perform quantification with the formula that calculates voltage variations in the line flow. The line flow and voltage changes can be easily induced by the power flow calculation performed every second in the operation system. It is expected that the proposed method will be able to contribute to securement of power system stability by securing efficient reactive power. Also, the proposed method will be able to contribute to prepare against contingencies effectively. It is not easy to prepare quickly for the situation where voltage drops rapidly due to the exhaustion of reactive power source by observing voltage information only. This paper's simulation was performed on the large scale Korean power system in steady state.

Efficient Approximation Method for Constructing Quadratic Response Surface Model

  • Park, Dong-Hoon;Hong, Kyung-Jin;Kim, Min-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.876-888
    • /
    • 2001
  • For a large scaled optimization based on response surface methods, an efficient quadratic approximation method is presented in the context of the trust region model management strategy. If the number of design variables is η, the proposed method requires only 2η+1 design points for one approximation, which are a center point and tow additional axial points within a systematically adjusted trust region. These design points are used to uniquely determine the main effect terms such as the linear and quadratic regression coefficients. A quasi-Newton formula then uses these linear and quadratic coefficients to progressively update the two-factor interaction effect terms as the sequential approximate optimization progresses. In order to show the numerical performance of the proposed method, a typical unconstrained optimization problem and two dynamic response optimization problems with multiple objective are solved. Finally, their optimization results compared with those of the central composite designs (CCD) or the over-determined D-optimality criterion show that the proposed method gives more efficient results than others.

  • PDF

An Efficient Dynamic Response Optimization Using the Design Sensitivities Approximated Within the Estimate Confidence Radius

  • Park, Dong-Hoon;Kim, Min-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1143-1155
    • /
    • 2001
  • In order to reduce the expensive CPU time for design sensitivity analysis in dynamic response optimization, this study introduces the design sensitivities approximated within estimated confidence radius in dynamic response optimization with ALM method. The confidence radius is estimated by the linear approximation with Hessian of quasi-Newton formula and qualifies the approximate gradient to be validly used during optimization process. In this study, if the design changes between consecutive iterations are within the estimated confidence radius, then the approximate gradients are accepted. Otherwise, the exact gradients are used such as analytical or finite differenced gradients. This hybrid design sensitivity analysis method is embedded in an in-house ALM based dynamic response optimizer, which solves three typical dynamic response optimization problems and one practical design problem for a tracked vehicle suspension system. The optimization results are compared with those of the conventional method that uses only exact gradients throughout optimization process. These comparisons show that the hybrid method is more efficient than the conventional method. Especially, in the tracked vehicle suspension system design, the proposed method yields 14 percent reduction of the total CPU time and the number of analyses than the conventional method, while giving similar optimum values.

  • PDF

Progressive Quadratic Approximation Method for Effective Constructing the Second-Order Response Surface Models in the Large Scaled System Design (대형 설계 시스템의 효율적 반응표면 근사화를 위한 점진적 이차 근사화 기법)

  • Hong, Gyeong-Jin;Kim, Min-Su;Choe, Dong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3040-3052
    • /
    • 2000
  • For effective construction of second-order response surface models, an efficient quad ratic approximation method is proposed in the context of trust region model management strategy. In the proposed method, although only the linear and quadratic terms are uniquely determined using 2n+1 design points, the two-factor interaction terms are mathematically updated by normalized quasi-Newton formula. In order to show the numerical performance of the proposed approximation method, a sequential approximate optimizer is developed and solves a typical unconstrained optimization problem having 2, 6, 10, 15, 30 and 50 design variables, a gear reducer system design problem and two dynamic response optimization problems with multiple objectives, five objectives for one and two objectives for the other. Finally, their optimization results are compared with those of the CCD or the 50% over-determined D-optimal design combined with the same trust region sequential approximate optimizer. These comparisons show that the proposed method gives more efficient than others.

A Study on Buckling Behavior of Shallow Circular Arches (낮은 원호아치의 좌굴거동에 대한 연구)

  • 김연태;허택녕;오순택
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.87-94
    • /
    • 1998
  • Behavioral characteristics of shallow circular arches with dynamic loading and different end conditions are analysed. Geometric nonlinearity is modelled using Lagrangian description of the motion. The finite element analysis procedure is used to solve the dynamic equation of motion, and the Newmark method is adopted in the approximation of time integration. The behavior of arches is analysed using the buckling criterion and non-dimensional time, load and shape parameters which Humphreys suggested. But a new deflection-ratio formula including the effect of horizontal displacement plus vertical displacement is presented to apply for the non-symmetric buckling problems. Through the model analysis, it's confirmed that fix-ended arches have higher buckling stability than hinge-ended arches, and arches with the same shape parameter have the same deflection ratio at the same time parameter when loaded with the same parametric load.

  • PDF

Generalized Kinematic Analysis for the Motion of 3-D Linkages using Symbolic Equation (기호방정식을 이용한 3차원 연쇄기구 운동해석의 일반화)

  • 김호룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.102-109
    • /
    • 1986
  • Based on the Hartenberg-Denavit symbolic equation, which is one of equations for the kinematic analysis of three dimensional (3-D) linkage, a generalized kinematic motion equation is derived utilizing Euler angles and employing the coordinates transformation. The derived equation can feasibly be used for the motion analysis of any type of 3-D linkages as well as 2-D ones. In order to simulate the general motion of 3-D linkgages on digital computer, the generalized equation is programmed through the process of numerical analysis after converting the equation to the type of Newton-Raphson formula and denoting it in matrix form. The feasibility of theoretically derived equation is experimentally proved by comparing the results from the computer with those from experimental setup of three differrent but generally empolyed 3-D linkages.