• 제목/요약/키워드: Newton Iteration

검색결과 180건 처리시간 0.026초

알루미늄 합금박판 비등온 성형공정 스프링백 해석용 유한요소 프로그램 개발 (2부 : 이론 및 해석) (Development of Finite Element Program for Analyzing Springback Phenomena of Non-isothermal Forming Processes for Aluminum Alloy Sheets (Part II : Theory & Analysis))

  • 금영탁;한병엽
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 제4회 박판성형 심포지엄
    • /
    • pp.13-20
    • /
    • 2003
  • The implicit, finite element analysis program for analyzing the springback in the warm forming process of aluminum alloy sheets was developed. For the description of planar anisotropy in warm forming temperatures, Barlat's yield function is employed, and the power law type constitutive equation is used in terms of working temperatures fur the depiction of work hardening in high temperatures. Also, Jetture's 4-node shell elements are introduced for reflecting the mechanical behavior of aluminum alloy sheet and the non-steady heat balance equations are solved for considering heat gain and loss during the forming process. For the springback evaluation, Newton-Raphson iteration method is introduced for overcoming the geometric nonlinearlity problem. In order to verify the validity of the FEM program developed, the stretching bending and springback processes are simulated. Though springback analysis results are slightly bigger than experimental ones, they have the same trend of the decreasing springback as the forming temperature increases.

  • PDF

단층 래티스돔의 안정해석기법 및 좌굴특성에 관한 연구 (A Study on the Analytical Technique of Stability and Buckling Characteristics of the Single Layer Latticed Domes)

  • 한상을
    • 전산구조공학
    • /
    • 제9권3호
    • /
    • pp.209-216
    • /
    • 1996
  • 본 논문의 목적은 단층래티스 돔의 안정해석 기법을 제안하고, 다양한 조건하에서 단층 래티스 돔이 갖는 좌굴특성을 규명하는데 있다. 기하학적 비선형 평형경로의 탐색 및 좌굴점 그리고 분기경로의 방향 등을 수직적으로 계산하기 위하여 호장법(Arc-Length Method)을 이용하였으며, 부재의 좌굴가능성을 판단하기 위하여 에너지밀도함수를 제안하였다. 강절점을 갖는 구조물의 거동 특성을 규명하기 위하여 3종류의 비선형 강성행렬을 유도하여 해석하였으며, semi-rigid절점을 갖는 구조물을 해석하기 위하여 스프링모델을 제안하고, 부재의 세장비, 반개각, 경계조건 및 다양한 하중조건을 파라메터로하여 좌굴특성을 규명하였다.

  • PDF

해양심층수 취수관 부설을 위한 수치해석적 및 실험적 연구 (Numerical and Experimental studies on pipeline laying for Deep Ocean Water)

  • 정동효;김현주;김진하;박한일
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.29-34
    • /
    • 2004
  • Numerical and experimental studies on pipeline laying for intake Deep Ocean Water are carried out. In the numerical study, an implicit finite difference algorithm is employed for three-dimensional pipe equations. Fluid non-linearity and bending stiffness are considered and solved by Newton-Raphson iteration. Seabed is modeled as elastic foundation with linear spring and damper. Top tension and general configuration of pipeline at a depth are predicted. It is found that control for tension to prevent being large curvature of pipeline is needed on th steep seabed and, it should be considered 23.5 ton of tension at a top of pipe on the process of pipeline laying at 400m of water depth The largest top tension of pipe on condition of the beam sea during pipe laying is shown from the experiment. The results of this study can be contributed to the design of pipeline laying for upwelling deep ocean water.

  • PDF

Large deflection analysis of edge cracked simple supported beams

  • Akbas, Seref Doguscan
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.433-451
    • /
    • 2015
  • This paper focuses on large deflection static behavior of edge cracked simple supported beams subjected to a non-follower transversal point load at the midpoint of the beam by using the total Lagrangian Timoshenko beam element approximation. The cross section of the beam is circular. The cracked beam is modeled as an assembly of two sub-beams connected through a massless elastic rotational spring. It is known that large deflection problems are geometrically nonlinear problems. The considered highly nonlinear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. There is no restriction on the magnitudes of deflections and rotations in contradistinction to von-Karman strain displacement relations of the beam. The beams considered in numerical examples are made of Aluminum. In the study, the effects of the location of crack and the depth of the crack on the non-linear static response of the beam are investigated in detail. The relationships between deflections, end rotational angles, end constraint forces, deflection configuration, Cauchy stresses of the edge-cracked beams and load rising are illustrated in detail in nonlinear case. Also, the difference between the geometrically linear and nonlinear analysis of edge-cracked beam is investigated in detail.

A finite strip method for elasto-plastic analysis of thin-walled structures under pure bending

  • Cheung, M.S.;Akhras, G.;Li, W.
    • Structural Engineering and Mechanics
    • /
    • 제8권3호
    • /
    • pp.233-242
    • /
    • 1999
  • In the present study, the elasto-plastic analysis of prismatic plate structures subjected to pure bending is carried out using the finite strip method. The end cross-sections of the structure are assumed to remain plane during deformation, and the compatibility along corner lines is ensured by choosing proper displacement functions. The effects of both the initial geometrical imperfections and residual stresses due to fabrication are included in the combined geometrically and materially nonlinear simulation. The von-Mises yield criterion and the Prandtl-Reuss flow theory of plasticity are applied in modelling the elasto-plastic behavior of material. Newton-Raphson iterations are carried out as the rotation of the end cross sections of the structure is increased step by step. The parameter representing the overall axial strain of structure is adjusted constantly during the iteration process in order to eliminate the resulting overall axial force on any cross-section of the structure in correspondence with the assumption of zero axial force in pure bending. Several numerical examples are presented to validate the present method and to investigate the effects of some material and geometrical parameters.

30톤 추력급 터보펌프 터빈의 구조 강도 및 진동 해석을 통한 안정성 예측 (Prediction of the Strength and Vibration Safety of the 30ton Thrust Turbopump Turbine by Finite Element Analysis)

  • 윤석환;전성민;이관호;김진한
    • 한국유체기계학회 논문집
    • /
    • 제7권5호
    • /
    • pp.20-28
    • /
    • 2004
  • Static and dynamic structural analyses of a turbine bladed-disk for a liquid rocket turbopump are performed to investigate the safety level of strength and vibration at design point. During operation, turbopump is exposed to various external loads. Therefore, the effects of them should be carefully considered and properly modeled. First, due to the high rotational speed of the turbopump, effects of centrifugal forces are considered in the structural analysis. Thermal load caused by severe temperature differences is also considered. A three dimensional finite element method (FEM) is used for linear and nonlinear structural analyses with modified Newton-Raphson iteration method. After the nonlinear solution is obtained from the structural analysis, dynamic characteristics are obtained as a function of rotational speed from the linearized eigenvalue analysis at an equilibrium position. From the analysis results, characteristics of stress distribution and vibration were thoroughly examined and investigated.

A Numerical and Experimental Study on Dynamics of A Towed Low-Tension Cable

  • 정동호;박한일
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.191-196
    • /
    • 2002
  • The paper presents a numerical and experimental investigation on dynamic behaviors of a towed low tension cable. In the numerical study, an implicit finite difference algorithm is employed for three-dimensional cable equations. Fluid and geometric non-linearity and bending stiffness are considered and solved by Newton-Raphson iteration. Block tri-diagonal matrix method is applied for the fast calculation of the huge size of matrices. In order to verify the numerical results and to see real physical phenomena, an experiment is carried out for a 6m cable in a deep and long towing tank. The cable is towed in two different ways; one is towed at a constant speed and the other is towed at a constant speed with top end horizontal oscillations. Cable tension and shear forces are measured at the top end. Numerical and experimental results are compared with good agreements in most cases but with some differences in a few cases. The differences are due to drag coefficients caused by vortex shedding. In the numerical modeling, non-uniform element length needs to be employed to cope with the sharp variation of tension and shear forces at near top end.

  • PDF

수치해석적 방법을 통한 해양심층수 취수용 유연 라이저의 거동 해석에 관한 연구 (A Study on the Behavior of Flexible Riser for Upwelling Deep Ocean Water by a Numerical Method)

  • 정동호;김현주;박한일
    • 한국해양공학회지
    • /
    • 제18권4호
    • /
    • pp.15-22
    • /
    • 2004
  • Static and dynamic analyses of a very flexible and light riser, for upwelling the deep ocean water, is performed. In this numerical study, an implicit finite difference algorithm is employed for three-dimensional riser equations. Fluid non-linearity and bending stiffness are considered and solved, using the Newton-Raphson iteration. Maintaining the depth of end point of a flexible and light riser is very important for upwelling deep ocean water in a floating type development system. Weight is attached at the end point of the riser in order to maintain its intake depth. It is designed under the strong surface current and the configuration of the rise is predicted. In the dynamic analysis, the tension variation at the top point of the riser is presented. T e results of this study can contribute to the design of the development system in floating type for upwelling deep ocean water.

A fiber beam element model for elastic-plastic analysis of girders with shear lag effects

  • Yan, Wu-Tong;Han, Bing;Zhu, Li;Jiao, Yu-Ying;Xie, Hui-Bing
    • Steel and Composite Structures
    • /
    • 제32권5호
    • /
    • pp.657-670
    • /
    • 2019
  • This paper proposes a one-dimensional fiber beam element model taking account of materially non-linear behavior, benefiting the highly efficient elastic-plastic analysis of girders with shear-lag effects. Based on the displacement-based fiber beam-column element, two additional degrees of freedom (DOFs) are added into the proposed model to consider the shear-lag warping deformations of the slabs. The new finite element (FE) formulations of the tangent stiffness matrix and resisting force vector are deduced with the variational principle of the minimum potential energy. Then the proposed element is implemented in the OpenSees computational framework as a newly developed element, and the full Newton iteration method is adopted for an iterative solution. The typical materially non-linear behaviors, including the cracking and crushing of concrete, as well as the plasticity of the reinforcement and steel girder, are all considered in the model. The proposed model is applied to several test cases under elastic or plastic loading states and compared with the solutions of theoretical models, tests, and shell/solid refined FE models. The results of these comparisons indicate the accuracy and applicability of the proposed model for the analysis of both concrete box girders and steel-concrete composite girders, under either elastic or plastic states.

Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory

  • Cuong-Le, Thanh;Nguyen, Khuong D.;Le-Minh, Hoang;Phan-Vu, Phuong;Nguyen-Trong, Phuoc;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • 제12권5호
    • /
    • pp.441-455
    • /
    • 2022
  • This study explores the linear and nonlinear solutions of sigmoid functionally graded material (S-FGM) nanoplate with porous effects. A size-dependent numerical solution is established using the strain gradient theory and isogeometric finite element formulation. The nonlinear nonlocal strain gradient is developed based on the Reissner-Mindlin plate theory and the Von-Karman strain assumption. The sigmoid function is utilized to modify the classical functionally graded material to ensure the constituent volume distribution. Two different patterns of porosity distribution are investigated, viz. pattern A and pattern B, in which the porosities are symmetric and asymmetric varied across the plate's thickness, respectively. The nonlinear finite element governing equations are established for bending analysis of S-FGM nanoplates, and the Newton-Raphson iteration technique is derived from the nonlinear responses. The isogeometric finite element method is the most suitable numerical method because it can satisfy a higher-order derivative requirement of the nonlocal strain gradient theory. Several numerical results are presented to investigate the influences of porosity distributions, power indexes, aspect ratios, nonlocal and strain gradient parameters on the porous S-FGM nanoplate's linear and nonlinear bending responses.