• 제목/요약/키워드: Newton Harmonic Balance method

검색결과 4건 처리시간 0.024초

Nonlinear vibration analysis of a type of tapered cantilever beams by using an analytical approximate method

  • Sun, Weipeng;Sun, Youhong;Yu, Yongping;Zheng, Shaopeng
    • Structural Engineering and Mechanics
    • /
    • 제59권1호
    • /
    • pp.1-14
    • /
    • 2016
  • In this paper, an alternative analytical method is presented to evaluate the nonlinear vibration behavior of single and double tapered cantilever beams. The admissible lateral displacement function satisfying the geometric boundary conditions of a single or double tapered cantilever beam is derived by using Rayleigh-Ritz method. Based on the Lagrange method and the Newton Harmonic Balance (NHB) method, analytical approximate solutions in closed and explicit form are obtained. These approximate solutions show excellent agreement with those of numeric method for small as well as large amplitude. Moreover, due to brevity of expressions, the present analytical approximate solutions are convenient to investigate effects of various parameters on the large amplitude vibration response of tapered beams.

Analytical approximate solution for Initial post-buckling behavior of pipes in oil and gas wells

  • Yu, Yongping;Sun, Youhong;Han, Yucen
    • Coupled systems mechanics
    • /
    • 제1권2호
    • /
    • pp.155-163
    • /
    • 2012
  • This paper presents analytical approximate solutions for the initial post-buckling deformation of the pipes in oil and gas wells. The governing differential equation with sinusoidal nonlinearity can be reduced to form a third-order-polynomial nonlinear equation, by coupling of the well-known Maclaurin series expansion and orthogonal Chebyshev polynomials. Analytical approximations to the resulting boundary condition problem are established by combining the Newton's method with the method of harmonic balance. The linearization is performed prior to proceeding with harmonic balancing thus resulting in a set of linear algebraic equations instead of one of non-linear algebraic equations, unlike the classical method of harmonic balance. We are hence able to establish analytical approximate solutions. The approximate formulae for load along axis, and periodic solution are established for derivative of the helix angle at the end of the pipe. Illustrative examples are selected and compared to "reference" solution obtained by the shooting method to substantiate the accuracy and correctness of the approximate analytical approach.

조화함수법을 이용한 주기 비선형 시스템의 Chaos 해석 (Chaos analysis for the periodic nonlinear system using harmonic balance method)

  • Kim, Y.B.
    • 한국정밀공학회지
    • /
    • 제11권6호
    • /
    • pp.75-85
    • /
    • 1994
  • 주기함수의 외력을 갖는 버선형 시스템의 다양한 응답 특성을 구하기 위해 새로운 조화함수법(HBM)을 적용하였다. 새로운 조화함수법의 해는 비선형항을 선형항으로부터 따로 분리시킨 다음 같은 주파수 성분을 갖는 비선형 방정식들을 Newton-Raphosn법으로 풀어서 구하였다. 다양한 천이(Bifurcation) 특성을 해석적으로 판별하기 위하여 HBM의 해를 이용하여 구한 섭동 방정식의 Floquet 지수의 고유해를 사용하였다. 새로이 개발한 HBM과 천이 판별법을 1차원 비선형항을 갖는 구조물인 ALP(Articulated Loading Platform) 모델과 다차원인 비선 형 회전체 모델에 적용시켜 HBM의 해의 정확성과 이들 시스템의 천이 특성의 하나인 Chaos 존재를 확인 하였다.

  • PDF

Analytical approximate solutions for large post-buckling response of a hygrothermal beam

  • Yu, Yongping;Sun, Youhong
    • Structural Engineering and Mechanics
    • /
    • 제43권2호
    • /
    • pp.211-223
    • /
    • 2012
  • This paper deals with large deformation post-buckling of a linear-elastic and hygrothermal beam with axially nonmovable pinned-pinned ends and subjected to a significant increase in swelling by an alternative method. Analytical approximate solutions for the geometrically nonlinear problem are presented. The solution for the limiting case of a string is also obtained. By coupling of the well-known Maclaurin series expansion and orthogonal Chebyshev polynomials, the governing differential equation with sinusoidal nonlinearity can be reduced to form a cubic-nonlinear equation, and supplementary condition with cosinoidal nonlinearity can also be simplified to be a polynomial integral equation. Analytical approximations to the resulting boundary condition problem are established by combining the Newton's method with the method of harmonic balance. Two approximate formulae for load along axis, potential strain for free hygrothermal expansion and periodic solution are established for small as well as large angle of rotation at the end of the beam. Illustrative examples are selected and compared to "reference" solution obtained by the shooting method to substantiate the accuracy and correctness of the approximate analytical approach.