• Title/Summary/Keyword: Newton′s method

Search Result 339, Processing Time 0.03 seconds

IMPROVED CONVERGENCE RESULTS FOR GENERALIZED EQUATIONS

  • Argyros, Ioannis K.
    • East Asian mathematical journal
    • /
    • v.24 no.2
    • /
    • pp.161-168
    • /
    • 2008
  • We revisit the study of finding solutions of equations containing a differentiable and a continuous term on a Banach space setting [1]-[5], [9]-[11]. Using more precise majorizing sequences than before [9]-[11], we provide a semilocal convergence analysis for the generalized Newton's method as well the generalized modified Newton's method. It turns out that under the same or even weaker hypotheses: finer error estimates on the distances involved, and an at least as precise information on the location of the solution can be obtained. The above benefits are obtained under the same computational cost.

  • PDF

CONVERGENCE THEOREMS FOR NEWTON'S AND MODIFIED NEWTON'S METHODS

  • Argyros, Ioannis K.
    • The Pure and Applied Mathematics
    • /
    • v.16 no.4
    • /
    • pp.405-416
    • /
    • 2009
  • In this study we are concerned with the problem of approximating a locally unique solution of an equation in a Banach space setting using Newton's and modified Newton's methods. We provide weaker convergence conditions for both methods than before [5]-[7]. Then, we combine Newton's with the modified Newton's method to approximate locally unique solutions of operator equations. Finer error estimates, a larger convergence domain, and a more precise information on the location of the solution are obtained under the same or weaker hypotheses than before [5]-[7]. The results obtained here improve our earlier ones reported in [4]. Numerical examples are also provided.

  • PDF

The Origin of Newton's Generalized Binomial Theorem (뉴턴의 일반화된 이항정리의 기원)

  • Koh, Youngmee;Ree, Sangwook
    • Journal for History of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.127-138
    • /
    • 2014
  • In this paper we investigate how Newton discovered the generalized binomial theorem. Newton's binomial theorem, or binomial series can be found in Calculus text books as a special case of Taylor series. It can also be understood as a formal power series which was first conceived by Euler if convergence does not matter much. Discovered before Taylor or Euler, Newton's binomial theorem must have a good explanation of its birth and validity. Newton learned the interpolation method from Wallis' famous book ${\ll}$Arithmetica Infinitorum${\gg}$ and employed it to get the theorem. The interpolation method, which Wallis devised to find the areas under a family of curves, was by nature arithmetrical but not geometrical. Newton himself used the method as a way of finding areas under curves. He noticed certain patterns hidden in the integer binomial sequence appeared in relation with curves and then applied them to rationals, finally obtained the generalized binomial sequence and the generalized binomial theorem.

Partial Fraction Expansions for Newton's and Halley's Iterations for Square Roots

  • Kouba, Omran
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.3
    • /
    • pp.347-357
    • /
    • 2012
  • When Newton's method, or Halley's method is used to approximate the pth root of 1-z, a sequence of rational functions is obtained. In this paper, a beautiful formula for these rational functions is proved in the square root case, using an interesting link to Chebyshev's polynomials. It allows the determination of the sign of the coefficients of the power series expansion of these rational functions. This answers positively the square root case of a proposed conjecture by Guo(2010).

ON THE NEWTON-KANTOROVICH AND MIRANDA THEOREMS

  • Argyros, Ioannis K.
    • East Asian mathematical journal
    • /
    • v.24 no.3
    • /
    • pp.289-293
    • /
    • 2008
  • We recently showed in [5] a semilocal convergence theorem that guarantees convergence of Newton's method to a locally unique solution of a nonlinear equation under hypotheses weaker than those of the Newton-Kantorovich theorem [7]. Here, we first weaken Miranda's theorem [1], [9], [10], which is a generalization of the intermediate value theorem. Then, we show that operators satisfying the weakened Newton-Kantorovich conditions satisfy those of the weakened Miranda’s theorem.

  • PDF

SOLVING MATRIX POLYNOMIALS BY NEWTON'S METHOD WITH EXACT LINE SEARCHES

  • Seo, Jong-Hyeon;Kim, Hyun-Min
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.2
    • /
    • pp.55-68
    • /
    • 2008
  • One of well known and much studied nonlinear matrix equations is the matrix polynomial which has the form $P(X)=A_0X^m+A_1X^{m-1}+{\cdots}+A_m$, where $A_0$, $A_1$, ${\cdots}$, $A_m$ and X are $n{\times}n$ complex matrices. Newton's method was introduced a useful tool for solving the equation P(X)=0. Here, we suggest an improved approach to solve each Newton step and consider how to incorporate line searches into Newton's method for solving the matrix polynomial. Finally, we give some numerical experiment to show that line searches reduce the number of iterations for convergence.

  • PDF

LOCAL CONVERGENCE RESULTS FOR NEWTON'S METHOD

  • Argyros, Ioannis K.;Hilout, Said
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.267-275
    • /
    • 2012
  • We present new results for the local convergence of Newton's method to a unique solution of an equation in a Banach space setting. Under a flexible gamma-type condition [12], [13], we extend the applicability of Newton's method by enlarging the radius and decreasing the ratio of convergence. The results can compare favorably to other ones using Newton-Kantorovich and Lipschitz conditions [3]-[7], [9]-[13]. Numerical examples are also provided.

NEWTON SCHULZ METHOD FOR SOLVING NONLINEAR MATRIX EQUATION Xp + AXA = Q

  • Kim, Hyun-Min;Kim, Young-jin;Meng, Jie
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1529-1540
    • /
    • 2018
  • The matrix equation $X^p+A^*XA=Q$ has been studied to find the positive definite solution in several researches. In this paper, we consider fixed-point iteration and Newton's method for finding the matrix p-th root. From these two considerations, we will use the Newton-Schulz algorithm (N.S.A). We will show the residual relation and the local convergence of the fixed-point iteration. The local convergence guarantees the convergence of N.S.A. We also show numerical experiments and easily check that the N.S. algorithm reduce the CPU-time significantly.

ON NEWTON'S METHOD FOR SOLVING A SYSTEM OF NONLINEAR MATRIX EQUATIONS

  • Kim, Taehyeong;Seo, Sang-Hyup;Kim, Hyun-Min
    • East Asian mathematical journal
    • /
    • v.35 no.3
    • /
    • pp.341-349
    • /
    • 2019
  • In this paper, we are concerned with the minimal positive solution to system of the nonlinear matrix equations $A_1X^2+B_1Y +C_1=0$ and $A_2Y^2+B_2X+C_2=0$, where $A_i$ is a positive matrix or a nonnegative irreducible matrix, $C_i$ is a nonnegative matrix and $-B_i$ is a nonsingular M-matrix for i = 1, 2. We apply Newton's method to system and present a modified Newton's iteration which is validated to be efficient in the numerical experiments. We prove that the sequences generated by the modified Newton's iteration converge to the minimal positive solution to system of nonlinear matrix equations.