• Title/Summary/Keyword: NewWave

Search Result 2,162, Processing Time 0.037 seconds

Baseline-Free Crack Detection in Steel Structures using Lamb Waves and PZT Polarity (램파와 압전소자 극성을 사용한 강구조의 실시간 균열손상 감지기법 개발)

  • Sohn, Hoon;Kim, Seung-Bum
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.79-91
    • /
    • 2006
  • A new methodology of guided wave based nondestructive testing (NDT) is developed to detect crack damage in civil infrastructures such as steel bridges without using prior baseline data. In conventional guided wave based techniques, damage is often identified by comparing the "current" data obtained from a potentially damaged condition of a structure with the "past" baseline data collected at the pristine condition of the structure. However, it has been reported that this type of pattern comparison with the baseline data can lead to increased false alarms due to its susceptibility to varying operational and environmental conditions of the structure. To develop a more robust damage diagnosis technique, a new concept of NDT is conceived so that cracks can be detected without direct comparison with previously obtained baseline data. The proposed NDT technique utilizes the polarization characteristics of the piezoelectric wafers attached on the both sides of the thin metal structure. Crack formation creates Lamb wave mode conversion due to a sudden change in the thickness of the structure. Then, the proposed technique instantly detects the appearance of the crack by extracting this mode conversion from the measured Lamb waves even at the presence of changing operational and environmental conditions. Numerical and experimental results are presented to demonstrate the applicability of the proposed technique to crack detection.

Development of Site Classification System and Modification of Design Response Spectra Considering Geotechnical Characteristics in Korea

  • Kim, Dong-Soo;Yoon, Jong-Ku
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.65-77
    • /
    • 2007
  • Site response analyses were performed based on equivalent linear technique using shear wave velocity profiles of 162 sites collected around the Korean peninsula. The site characteristics, particularly the shear wave velocities and the depth to the bedrock, are compared to those in the western United States. The results show that the site-response coefficients based on the mean shear velocity of the top 30m ($V_{S30}$) suggested in the current code underestimates the motion in short-period ranges and overestimates the motion in mid-period ranges. The current Korean code based on UBC is required to be modified considering site characteristics in Korea for the reliable estimation of site amplification. From the results of numerical estimations, new regression curves were derived between site coefficients ($F_{a}\;and\;F_{v}$) and the fundamental site periods, and site coefficients were grouped based on site periods with reasonable standard deviations compared to site classification based on $V_{S30}$. Finally, new site classification system and modification of design response spectra are recommended considering geotechnical characteristics in Korea.

A New TWA-Based Efficient Signal Integrity Verification Technique for Complicated Multi-Layer RLC Interconnect Lines (복잡한 다층 RLC 배선구조에서의 TWA를 기반으로 한 효율적인 시그널 인테그러티 검증)

  • Jo Chan-Min;Eo Yung-Seon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.7 s.349
    • /
    • pp.20-28
    • /
    • 2006
  • A new TWA(Traveling-wave-based Waveform Approximation)-based signal integrity verification method for practical interconnect layout structures which are composed of non-uniform RLC lines with various discontinuities is presented. Transforming the non-uniform lines into virtual uniform lines, signal integrity of the practical layout structures can be very efficiently estimated by using the TWA-technique. It is shown that the proposed technique can estimate the signal integrity much more efficiently than generic SPICE circuit model with 5% timing error and 10% crosstalk error.

Effect of GnRH or Estradiol on Emergence of a New Follicular Wave, Follicular Development and Pregnancy Rate in a CIDR-Based Timed Al Protocol in Holstein Cows

  • Kim, Ui-Hyung;Nam, Hyun-Wok;Kang, Hyun-Gu;Kim, Ill-Hwa
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.125-125
    • /
    • 2003
  • The objective of this study was to evaluate the effect of GnRH or estradiol in a CIDR-based timed Al (TAI) protocol on follicular turnover, synchronized ovulation and pregnancy rates in Holstein cows. Cows were treated at random stages of the estrus cycle with an insertion of an intravigal progesterone (1.9 g) device (CIDR, Day 0) and either no other treatment (control group; n=10), injection of 100 ug fertirelin acetate (GnRH group; n=10) or 4 mg estradiol benzoate (estradiol group; n=10). Seven days later devices were removed and an injection of 25 mg $PGF_{2$\alpha$}$ was administered. On Day 9, 100 ug GnRH was administered. Cows received a fixed-time insemination 16 h after injection of the GnRH. (중략)

  • PDF

Development of Earthquake Prevention Technique Considering Geotechnical Site Characteristics of Korea (국내 지반조건이 고려된 지진 방재기술 확립 방안;지반분류 방법 개선 방안을 중심으로)

  • Kim, Dong-Soo;Yoon, Jong-Ku;Kim, Kyung-Teak;Cho, Seong-Ha
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.154-162
    • /
    • 2005
  • In this paper, site response analyses were performed based on equivalent linear technique using the shear wave velocity profiles of 162 sites collected around the Korean peninsula. The site characteristics, particularly the shear wave velocities and the depth to the bedrock, are compared to those in the western United States. The results show that the site-response coefficients based on the mean shear velocity of the top 30m ($V_{S30}$) suggested in the current code underestimates the motion in short-period ranges and overestimates the motion in mid-period ranges. Also the current Korean code based on UBC is required to be modified considering site characteristics in Korea for the reliable estimation of site amplification. From the results of numerical estimations, new regression curves were derived between site coefficients ($F_a$ and $F_v$) and the fundamental site periods, and site coefficients were grouped based on site periods in the regions of shallow bedrock. The standard deviations of the proposed method was reasonable compared to site classification based on $V_{S30}$. Finally, new site classification system is recommended based on site periods for regions of shallow bedrock depth in Korea.

  • PDF

New Fluid Flow System for Simulation of Mechanical Loading to Bone Cells During Human Gait Cycle

  • Ahn, Jae-Mok
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.377-386
    • /
    • 2007
  • Mechanical loading to bone cells using simple sine wave or constant wave fluid flow has been widely used for in vitro experiments. Human gait is characterized by a complex loading to bones of lower extremities which results from a series of events consisting of heel strike, foot flat and push-off during the stance phase of the gait cycle. Telemetric force analyses have shown that human femora are subject to multiphasic loading. Therefore, it would be ideal if the physiologic loading conditions during human walking can be used for in vitro mechanotransduction studies. Here, for a mechanotransduction study, we develop it fluid flow system (FFS) in order to simulate human physiologic mechanicalloading on bone cells. The development methods of the FFS including the COR (Center for Orthopedic Research), monitor program are presented. The FFS could generate various multiphasic loading conditions of human gaits with output flow. Wall shear distribution was very uniform, with 81 % of the effective loading area of the culture on a glass slide. Our results demonstrated that the FFS, provide a new translational approach for unveiling molecular mechanotransduction pathways in bone cells.

A Computational Study of Flowfield for a Vent Mixer in Supersonic Flow (초음속 유동장 내 벤트 혼합기에 관한 수치해석 연구)

  • Kim, Chae-Hyoung;Jeung, In-Seuck
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.2
    • /
    • pp.33-39
    • /
    • 2008
  • To improve the mixing efficiency and to reduce the pressure loss, it is needed to develope a new mixing device for supersonic combustion. The vent mixer is introduced as the new supersonic fuel-air mixer. Computational analyses, that include pressure profile, density contour, and streamline tracing, have been carried out. The expansion wave generates at the end of the extended upper wall of the mixer. And it reduces the shock wave from the hole. Incoming air flow through the hole makes several recirculation regions which increase the mixing efficiency, and the separation region at the downward wall expends the boundary layer which reduces the pressure loss.

Experimental Evaluation of Construction Performance and Long-term Settlements in Soft Ground Breakwater (연약지반 방파제의 시공성능 및 장기침하에 관한 실험적 평가)

  • Kwon, O-Soon;Jang, In-Sung;Park, Woo-Sun;Yum, Ki-Dai
    • Ocean and Polar Research
    • /
    • v.25 no.spc3
    • /
    • pp.385-392
    • /
    • 2003
  • A new type of soft ground breakwater was recently developed, which does not need ground improvement because of light weight and structural characteristics. The various studies about consolidation settlements and lateral behavior of proposed soft ground breakwater have been conducted. But, the systematic investigations on the construction performance and long-term settlements of new type breakwater has not been accomplished. In this study, construction simulation of soft ground breakwater with soil box model test and experiments of the long-term wave loaded breakwater were performed. The results of test shows that it is possible to compensate differential settlements by dead loading and/or suction pressure, and to reduce the consolidation settlements by preloading method. It was also found that the vertical and lateral displacements of long-term wave loaded breakwater were negligible.

Marina Development Impact on the Tranquility of Small Coast Harbor

  • Lee, Dong-Hyun;Lee, Joong-Woo;An, Hyo-Jae;Kim, Kang-Min
    • Journal of Navigation and Port Research
    • /
    • v.38 no.6
    • /
    • pp.673-681
    • /
    • 2014
  • Due to the increased demand for safety and security requirements on the port infrastructure, the harbor tranquility is one of the important parameter in the mooring basin of harbor. It relates keenly to berthing/unberthing and cargo handling works but also it is an important indicator to get the minimum water area as the safe refuge. Hupo harbor is a national coastal harbor located in east coast of Korea and a development plan for a new marina near the entrance is being carried out including berth layouts, breakwater extensions, 300m marina berths, dredging and land reclamation works. The new plan will impact on calmness of the existing port. Therefore, it is necessary to analyze in complex the variation of wave height and direction caused by wave refraction, diffraction, shoaling and reflection from the incident waves from outside the harbor. In order to check the calmness inside a harbor, the numerical models are being used currently need fundamental reviews according to the difference of results which depend on their respective features. In this study, hence, it was introduced the validity of numerical models by comparing the computational results with the hydraulic model experiment. The current investigations contribute to the existing development recommendations and provide further solutions for port planning.

A Monte Carlo Simulation Model Development for Electron Beam Lithography Process in the Multi-Layer Resists and Compound Semiconductor Substrates (다층 리지스트 및 화합물 반도체 기판 구조에서의 전자 빔 리소그래피 공정을 위한 몬테 카를로 시뮬레이션 모델 개발)

  • 손명식
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.3
    • /
    • pp.182-192
    • /
    • 2003
  • A new Monte Carlo (MC) simulator for electron beam lithography process in the multi-layer resists and compound semiconductor substrates has been developed in order to fabricate and develop the high-speed PHEMT devices for millimeter-wave frequencies. For the accurate and efficient calculation of the transferred and deposited energy distribution to the multi-component and multi-layer targets by electron beams, we newly modeled for the multi-layer resists and heterogeneous multi-layer substrates. By this model, the T-shaped gate fabrication process by electron beam lithography in the PHEMT device has been simulated and analyzed. The simulation results are shown along with the SEM observations in the T-gate formation process, which verifies the new model in this paper.