• Title/Summary/Keyword: NewWave

Search Result 2,151, Processing Time 0.039 seconds

On the artificially-upstream flux splitting method

  • Sun M.;Takayama K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.156-157
    • /
    • 2003
  • A simple method is proposed to split the flux vector of the Euler equations by introducing two artificial wave speeds. The direction of wave propagation can be adjusted by these two wave speeds. This idea greatly simplifies the upwinding, and leads to a new family of upwind schemes. Numerical flux function for multi-dimensional Euler equations is formulated for any grid system, structured or unstructured. A remarkable simplicity of the scheme is that it successfully achieves one-sided approximation for all waves without recourse to any matrix operation. Moreover, its accuracy is comparable with the exact Riemann solver. For 1-D Euler equations, the scheme actually surpasses the exact solver in avoiding expansion shocks without any additional entropy fix. The scheme can exactly resolve stationary contact discontinuities, and it is also freed of the carbuncle problem in multi­dimensional computations.

  • PDF

Optimized Sine-Wave Modulation of Multi-Level inverters for Electric Propulsion System (멀티레벨 인버터의 Optimized Sine-Wave Modulation)

  • Jin, Sun-Ho;Jo, Kwan-Jun;Kwak, Jun-Ho;Oh, Jin-Suk
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.200-201
    • /
    • 2005
  • This paper is analyzed a new modulation method of OSW(Optimized Sine-Wave) modulation strategy for cascaded H-bridge multi-level inverter. The inverter structure was modified with the maximum output voltage level, and the switching angle was calculated easily to adjust the requested Vrms of the output. The suggested modulation method could make output waveform very close to the ideal sine wave, and the THD value was improved also remarkably.

  • PDF

A Study on the Relationship between Flexural Beam Shape and Transport Characteristics for the Ultrasonic Transport Systems (초음파 이송 시스템에서 Flexural Beam의 형태 변화와 물체 이송과의 관계에 대한 연구)

  • 정상화;신병수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.25-29
    • /
    • 2003
  • In the semiconductor and the optical industry a new transport system which can replace the conventional sliding system is required. These systems are driven by magnetic field and conveyer belt. The magnetic field damages semiconductor and contact force scratches the optical lens. The ultrasonic wave driven system can solve these problem. In this paper, the object transport system using the excitation of ultrasonic wave is proposed. The experiments for finding the optimal excitation frequency, finding phase-difference between two ultrasonic wave generators are performed. The relationship of transporting speed according to the change of flexural beam shape is verified and the system performance for practical use is evaluated.

  • PDF

A Study on the Dynamic Characteristics of Object Transport System using Ultrasonic Wave (초음파를 이용한 물체 이송시스템의 동작특성 연구)

  • Jeong, Sang-Hwa;Kim, Hyun-Uk;Cha, Kyoung-Rae;Choi, Suk-Bong;Song, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.151-158
    • /
    • 2005
  • In the semiconductor and the optical industry, a new transport system which can replace the conventional sliding systems is required. The sliding systems are driven by the magnetic field and conveyer belts. The magnetic field nay damage semiconductor and the contact force may scratch the optical lens. The ultrasonic wave driven system can solve these problems. In this paper, an object transport system using the excitation of ultrasonic wave is proposed. The experiments for finding the optimal progressive frequency and the phase-differences between two ultrasonic wave generators are performed. The relationships between transportation speed and the excitation frequency, flexural beam shapes and amplification voltage are investigated.

A Study on Motion Characteristics of the Ultrasonic Transporting System according to the change of Flexural Beam Shape (Flexural Beam의 형태 변화에 따른 초음파 이송시스템의 동작특성에 관한 연구)

  • 정상화;신병수;차경래
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.696-699
    • /
    • 2003
  • In the semiconductor and the optical industry a new transport system which can replace the conventional sliding system is required. There systems are driven by magnetic field and conveyer belt. The magnetic field damages semiconductor and contact force scratches the optical lens. The ultrasonic wave driven system can solve these problem. In this paper, the object transport system using the excitation of ultrasonic wave is proposed. The experiments for finding the optimal excitation frequency, finding phase-difference between two ultrasonic wave generators are performed. The relationship of transporting speed according to the change of flexural beam shape is verified and the system performance for practical use is evaluated.

  • PDF

Wave Transmission Analysis of Semi-infinite Mindlin Plates Coupled at an Arbitrary Angle (임의의 각으로 연성된 반무한 Mindlin 판의 파동전달해석)

  • Park, Young-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.12
    • /
    • pp.999-1006
    • /
    • 2014
  • Mindlin plate theory includes the shear deformation and rotatory inertia effects which cannot be negligible as exciting frequency increases. The statistical methods such as energy flow analysis(EFA) and statistical energy analysis(SEA) are very useful for estimation of structure-borne sound of various built-up structures. For the reliable vibrational analysis of built-up structures at high frequencies, the energy transfer relationship between out-of-plane waves and in-plane waves exist in Mindlin plates coupled at arbitrary angles must be derived. In this paper, the new wave transmission analysis is successfully performed for various energy analyses of Mindlin plates coupled at arbitrary angles.

Millimeter and Terahertz Wave Circuit and System Technologies and Trends for Future Mobile Communications (미래 이동통신을 위한 밀리미터파와 테라헤르츠파 대역 회로 및 시스템 기술 동향)

  • Jang, S.;Kong, S.;Lee, H.D.;Park, J.;Kim, K.S.;Lee, K.C.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.5
    • /
    • pp.1-12
    • /
    • 2018
  • One of the most remarkable aspects of the recently completed 3GPP release-15 (5G new radio phase 1) is the fact that some millimeter-wave bands have been officially approved for 5G mobile communications. Because the demand for higher transmission capacity has only grown, other millimeter-wave or even higher-frequency terahertz-wave bands have attracted more attention over time. Based on this effort, this paper reviews and discusses the existing technologies and their trends in high-frequency circuits and systems at the millimeter and terahertz-wave bands, particularly for future mobile communications.

Mean Flow Velocity Measurement Using the Sound Field Reconstruction (음장 재구성에 의한 관내 평균유속 측정)

  • Kim, Kun-Soon;Cheung, Wan-Sup;Kwon, Hyu-Sang;Park, Kyung-Am;Paik, Jong-Seung;Yoo, Seong-Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.924-929
    • /
    • 2000
  • This paper addresses a new technique of measuring the mean flow velocity over the cross sectional area of the pipe using sound field reconstruction. When fluid flows in the pipe and two plane waves propagate oppositely through the medium, the flow velocity causes the change of wave number of the plane waves. The wave number of the positive going plane wave decreases and that of negative going one increases in comparison to static medium in the pipe. Theoretical backgrounds of this method are introduced in detail and the measurement of mean flow velocity using the sound field reconstruction is not affected by velocity profile upstream of microphones.

Peripheral Blood Flow Velocity and Peripheral Pulse Wave Velocity Measured Using a Clip-type Pulsimeter Equipped with a Permanent Magnet and a Hall Device

  • Kim, Keun-Ho;Lee, Sang-Suk
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.47-51
    • /
    • 2015
  • We measured radial arterial pulse signals using a prototype of a clip-type pulsimeter equipped with a permanent magnet and a Hall device, which produced signals through a voltage-detecting circuit. The systolic peak time and the reflective peak time for a temporally pulsed signal were analyzed for an arbitrary pulse wave at one position of a small permanent magnet. The measured value of the peripheral pulse wave velocity was about 1.25-1.52 m/s, demonstrating the accuracy of this new method. To measure the peripheral blood flow velocity, we simultaneously connected the radial artery pulsimeter to a photoplethysmography meter. The average value of the peripheral blood flow velocity was about 0.27-0.50 m/s.

Experimental Study of Wave-Absorbing Performance by Horizontal Punching Plates (수평형 타공판에 의한 소파성능의 실험적 연구)

  • Jung H. J.;Cho I. H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.2 no.1
    • /
    • pp.40-48
    • /
    • 1999
  • Wave absorbing system is needed at various kinds of wave basins (wave flume, towing tank, square tank) for the model test related to the ocean engineering. In this paper, the performance of wave absorbing system with new concept is estimated throughout the experiments. Herein, the wave absorbing system is designed by punching plate with a given porosity which is installed horizontally and submerged near the water surface. As the incident wave generated by a wave maker advances above a punching plate, the strong jet flow is formed near a hole of punching plate. As a result, wave energy is dissipated into heat energy, Systematic model tests were conducted at KRISO to verify the performance of the wave absorber using a punching plate. It was found that the reflection coefficient of wave absorber is deeply dependent on both the porosity and the submerged depth of a punching plate. Inclined installation of a punching plate shows better performance than a horizontal one within a certain inclined angle.

  • PDF