• 제목/요약/키워드: New strain

검색결과 2,141건 처리시간 0.026초

광섬유 격자 센서와 빔 커플러를 사용한 회전중인 블레이드의 변형률 측정 방법 (On-line Strain Measurement of Rotating Blade Using Fiber Bragg Grating Sensors and Beam Coupler)

  • 이인재;이종민;이상배;황요하
    • 한국소음진동공학회논문집
    • /
    • 제16권11호
    • /
    • pp.1172-1178
    • /
    • 2006
  • Measurement of blade strain with sensors directly installed on the blade has one critical issue, how to send the sensor signal to the ground. Strain-gauges have been dominantly used to directly measure stress of a blade and either a slip ring or a telemetry system has to be used to send measured signal to the ground. However, both systems have many inherent problems and sometimes very severe limitations to be practically used. In this paper, new on-line strain monitoring method using. FBG(Fiber Bragg Grating) sensors and a beam coupler is introduced. Measurement of rotor stress using FBG sensors is nothing new, but unlike other system which installs all necessary instruments on the rotor and use telemetry system to send data to the ground, this system makes use of light's unique characteristic - light travels through space. In this new approach, single optical fiber with many FBG sensors is installed on the blade and all other necessary instruments can be installed at ground thereby giving tremendous advantages over slip ring or telemetry system. A reference sensor is also introduced to compensate the beam coupler's transmission loss change due to rotation. The suggested system's good performance is demonstrated with experiments.

철도차량용 차륜 플레이트에서의 새로운 횡압 계측방법 (New Lateral Force Measurement Method of the Wheel Plate for Railway Vehicles)

  • 함영삼;전현규;서정원;이동형;권석진
    • 한국정밀공학회지
    • /
    • 제29권6호
    • /
    • pp.621-625
    • /
    • 2012
  • Conventionally, to measure derailment coefficient of a railway wheel, strain gauges for lateral force measurement are attached to both side of the wheel. But narrow gap between railway wheel and traction motor makes it difficult to attache the strain gauges at the inner side of wheel. In this study, to overcome the hard accessibility to the strain gauge points by narrow gap, a new Wheatstone bridge connection method is presented by attaching all the strain gauges at the outer side of wheel with a new bridge connection. We evaluate the running safety of railway vehicles in accordance with railway safety regulations. The experimental results obtained shows higher sensitivity than conventional methods and the derailment coefficient measurement procedure becomes simpler.

Flow Cytometric Analysis of Human Lysozyme Production in Recombinant Saccharomyces cerevisiae

  • Peterson Marvin S.;Kim Myoung-Dong;Han Ki-Cheol;Kim Ji-Hyun;Seo Jin-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권1호
    • /
    • pp.52-55
    • /
    • 2002
  • Flow cytometric techniques were used to investigate cell size, protein content and cell cycle behavior of recombinant Saccharomyces cerevisiae strains producing human lysozyme (HLZ). Two different signal sequences, the native yeast $MF\alpha1$ signal sequence and the rat $\alpha-amylase$ signal sequence, were used for secretion of HLZ. The strain containing the rat $\alpha-amylase$ signal sequence showed a higher level of internal lysozyme and lower specific growth rates. Flow cytometric analysis of the total protein content and cell size showed the strain harboring the native yeast signal sequence had a higher total protein content than the strain containing the rat $\alpha-amylase$ signal sequence. Cell cycle analysis indicated that the two lysozyme producing recombinant strains had an increased number of cells in the $G_2+M$ phase of the yeast cell cycle compared with the host strain SEY2102.

Optimal Conditions for Antimicrobial Metabolites Production from a New Streptomyces sp. RUPA-08PR Isolated from Bangladeshi Soil

  • Ripa, F.A.;Nikkon, F.;Zaman, S.;Khondkar, P.
    • Mycobiology
    • /
    • 제37권3호
    • /
    • pp.211-214
    • /
    • 2009
  • An actinomycete strain was isolated from northern part of Bangladesh and identified as a new Streptomyces species on the basis of its morphological, biochemical, cultural characteristics and 16S rRNA data. Attempts were made to optimize the culture conditions for the production of antimicrobial metabolites by this strain. Antimicrobial metabolites production was started after 7 days of incubation of culture broth and reached its maximum levels after 10 days and thereafter gradually decreased. The maximum production of antimicrobial metabolites was obtained when the culture medium pH was adjusted to 8. The optimum temperature for antimicrobial metabolites production was $39^{\circ}C$, indicated the new strain as mesophilic organism. Basel medium supplemented with glucose and yeast extract as carbon and nitrogen sources, respectively, was proved to be the best for the production of bioactive metabolites. Maximum production of bioactive metabolites was when NaCl concentration was 1% and among different minerals tested, $K_2HPO_4$ and NaCl showed positive influence on antibiotic production by the strain.

극한지용 고장력강의 평균 응력 삼축비 및 평균 정규 로드 파라메터를 고려한 3차원 파단 변형률 평면 개발: 제2부 파단 변형률 평면의 정식화 (Development of Three-Dimensional Fracture Strain Surface in Average Stress Triaxiaility and Average Normalized Lode Parameter Domain for Arctic High Tensile Steel: Part II Formulation of Fracture Strain Surface)

  • 정준모;박성주;김영훈
    • 한국해양공학회지
    • /
    • 제29권6호
    • /
    • pp.454-462
    • /
    • 2015
  • An extended study was conducted on the fracture criterion by Choung et al. (2011; 2012) and Choung and Nam (2013), and the results are presented in two parts. The theoretical background of the fracture and the results of new experimental studies were reported in Part I, and three-dimensional fracture surface formulations and verifications are reported in Part II. How the corrected true stress can be processed from the extrapolated true stress is first introduced. Numerical simulations using the corrected true stress were conducted for pure shear, shear-tension, and pure compression tests. The numerical results perfectly coincided with test results, except for the pure shear simulations, where volume locking appeared to prevent a load reduction. The average stress triaxialities, average normalized lode parameters, and equivalent plastic strain at fracture initiation were extracted from numerical simulations to formulate a new three-dimensional fracture strain surface. A series of extra tests with asymmetric notch specimens was performed to check the validity of the newly developed fracture strain surface. Then, a new user-subroutine was developed to calculate and transfer the two fracture parameters to commercial finite element code. Simulation results based on the user-subroutine were in good agreement with the test results.

The effect of a nonlocal stress-strain elasticity theory on the vibration analysis of Timoshenko sandwich beam theory

  • Mehdi Mohammadimehr
    • Advances in nano research
    • /
    • 제17권3호
    • /
    • pp.275-284
    • /
    • 2024
  • In this article, a nonlocal stress-strain elasticity theory on the vibration analysis of Timoshenko sandwich beam theory with symmetric and asymmetric distributions of porous core and functionally graded material facesheets is introduced. According to nonlocal elasticity Eringen's theory (nonlocal stress elasticity theory), the stress at a reference point in the body is dependent not only on the strain state at that point, but also on the strain state at all of the points throughout the body; while, according to a new nonlocal strain elasticity theory, the strain at a reference point in the body is dependent not only on the stress state at that point, but also on the stress state at all of the points throughout the body. Also, with combinations of two concepts, the nonlocal stress-strain elasticity theory is defined that can be actual at micro/nano scales. It is concluded that the natural frequency decreases with an increase in the nonlocal stress parameter; while, this effect is vice versa for nonlocal strain elasticity, because the stiffness of Timoshenko sandwich beam decreases with increasing of the nonlocal stress parameter; in which, the nonlocal strain parameter leads to increase the stiffness of structures at micro/nano scale. It is seen that the natural frequency by considering both nonlocal stress parameter and nonlocal strain parameter is higher than the nonlocal stress parameter only and lower for a nonlocal strain parameter only.

Structural damage detection using a damage probability index based on frequency response function and strain energy concept

  • Bagherahmadi, Seyed Ahdiye;Seyedpoor, Seyed Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제67권4호
    • /
    • pp.327-336
    • /
    • 2018
  • In this study, an efficient damage index is proposed to identify multiple damage cases in structural systems using the concepts of frequency response function (FRF) matrix and strain energy of a structure. The index is defined based on the change of strain energy of an element due to damage. For obtaining the strain energy stored in elements, the columnar coefficients of the FRF matrix is used. The new indicator is named here as frequency response function strain energy based index (FRFSEBI). In order to assess the performance of the proposed index for structural damage detection, some benchmark structures having a number of damage scenarios are considered. Numerical results demonstrate that the proposed index even with considering noise can accurately identify the actual location and approximate severity of the damage. In order to demonstrate the high efficiency of the proposed damage index, its performance is also compared with that of the flexibility strain energy based index (FSEBI) provided in the literature.

경로의존성 없는 극좌표계 성형한계도를 이용한 판재 성형성 향상 기술 (The Improvement of Formability using the Polar-coordinate FLD with Strain Path Independence)

  • 배문기;홍승현;최광용;윤정환;김영석
    • 소성∙가공
    • /
    • 제24권5호
    • /
    • pp.348-353
    • /
    • 2015
  • The PEPS(Polar-coordinated Effective Plastic Strain) FLD(Forming Limit Diagram), a new type of FLD based on a polar representation of the EPS(Effective Plastic Strain), appears to be an effective solution to the problem of non-linear strain path effects. This method has the advantages of the familiar strain-based diagram for linear loading, but without the strain-hardening limitations of the stress-based diagram, or non-intuitive aspects of alternate Cartesian diagrams based on effective plastic strain. In the current study, the PEPS FLD was applied to the development process of an aluminum automobile-body panel, including the necking or crack prediction, die design, and die modification. As a result, the PEPS FLD provided improved formability of aluminum sheet as compared to deriving the potential formability with non-linearity.

Size-dependent thermal behaviors of axially traveling nanobeams based on a strain gradient theory

  • Li, Cheng
    • Structural Engineering and Mechanics
    • /
    • 제48권3호
    • /
    • pp.415-434
    • /
    • 2013
  • This work is concerned with transverse vibrations of axially traveling nanobeams including strain gradient and thermal effects. The strain gradient elasticity theory and the temperature field are taken into consideration. A new higher-order differential equation of motion is derived from the variational principle and the corresponding higher-order non-classical boundary conditions including simple, clamped, cantilevered supports and their higher-order "offspring" are established. Effects of strain gradient nanoscale parameter, temperature change, shape parameter and axial traction on the natural frequencies are presented and discussed through some numerical examples. It is concluded that the factors mentioned above significantly influence the dynamic behaviors of an axially traveling nanobeam. In particular, the strain gradient effect tends to induce higher vibration frequencies as compared to an axially traveling macro beams based on the classical vibration theory without strain gradient effect.

Stress-strain behavior of geopolymer under uniaxial compression

  • Yadollahi, Mehrzad Mohabbi;Benli, Ahmet
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.381-389
    • /
    • 2017
  • The various types of structural materials that are available in the construction industry nowadays make it necessary to predict their stress-strain behavior. Geopolymer are alternatives for ordinary Portland cement concrete that are made from pozzolans activation. Due to relatively new material, many mechanical specifications of geopolymer are still not yet discovered. In this study, stress-strain behavior has been provided from experiments for unconfined geopolymers. Modulus of Elasticity and stress-strain behavior are critical requirements at analysis process and knowing complete stress-strain curve facilitates structural behavior assessment at nonlinear analysis for structures that have built with geopolymers. This study intends to investigate stress-strain behavior and modulus of elasticity from experimental data that belongs for geopolymers varying in fineness and mix design and curing method. For the sake of behavior determination, 54 types of geopolymer are used. Similar mix proportions are used for samples productions that have different fineness and curing approach. The results indicated that the compressive strength ranges between 7.7 MPa and 43.9 MPa at the age of 28 days curing.