Flow Cytometric Analysis of Human Lysozyme Production in Recombinant Saccharomyces cerevisiae

  • Peterson Marvin S. (Signal Pharmaceuticals Inc., San Diego) ;
  • Kim Myoung-Dong (Department of Food Science and Technology and Research Center for New Bio-Materials in Agriculture, Seoul National University) ;
  • Han Ki-Cheol (Department of Food Science and Technology and Research Center for New Bio-Materials in Agriculture, Seoul National University) ;
  • Kim Ji-Hyun (Ministry of Commerce, Industry and Energy) ;
  • Seo Jin-Ho (Department of Food Science and Technology and Research Center for New Bio-Materials in Agriculture, Seoul National University)
  • Published : 2002.01.01

Abstract

Flow cytometric techniques were used to investigate cell size, protein content and cell cycle behavior of recombinant Saccharomyces cerevisiae strains producing human lysozyme (HLZ). Two different signal sequences, the native yeast $MF\alpha1$ signal sequence and the rat $\alpha-amylase$ signal sequence, were used for secretion of HLZ. The strain containing the rat $\alpha-amylase$ signal sequence showed a higher level of internal lysozyme and lower specific growth rates. Flow cytometric analysis of the total protein content and cell size showed the strain harboring the native yeast signal sequence had a higher total protein content than the strain containing the rat $\alpha-amylase$ signal sequence. Cell cycle analysis indicated that the two lysozyme producing recombinant strains had an increased number of cells in the $G_2+M$ phase of the yeast cell cycle compared with the host strain SEY2102.

Keywords

References

  1. J. Microbiol. Biotechnol. v.9 Novel SSF process for ethanol production from microcrystalline cellulose using the δ-integrated recombinant yeast Cho, K. M.;Y. J. Yoo
  2. J. Microbiol. Biotechnol. v.9 Downstream processing of recombinant hirudin produced in Saccharomyces cerevisiae Chung, B. H.;W. K. Kim;K. J. Rao;C. H. Kim;S. K. Rhee
  3. J. Microbiol. Biotechnol. v.11 Enhanced transformation efficiency of an anticoagulant hirudin gene into saccharomyces cerrevisiae by a double δ-sequence Kim, M. D.;Y. J. Yoo;S. K. Rhee;J. H. Seo
  4. J. Microbiol. Biotechnol. v.8 Invertase production by fed-batch fermentations of recombinant saccharomyces cerevisiae Koo, J. H.;S. Y. Kim;Y. C. Park;N. S. Han;J. H. Seo
  5. J. Microbiol. Biotechnol. v.9 Analysis of secretion behavior of human lysozyme from recombinant Saccharomyces cerevisiae Marten, M. R.;N. S. Han;J. B. Park;J. H. Seo
  6. J. Microbiol. Biotechnol. v.9 Expression of Schwanniomyces occidentalis α-amylase gene Saccharomyces cerevisiae var. diastaticus Park, J. N.;D. J. Shin;H. O. Kim;D. H. Kim;H. B. Lee;S. B. Chun;S. Bai
  7. Biotechnol. Tech. v.6 Flow cytometric analysis of total protein content and size distribution of recombinant Saccharomyces cerevisiae Peterson, M. S.;A. Y. Patkar;J. H. Seo https://doi.org/10.1007/BF02439344
  8. Yeast v.8 Foreign gene expression in yeast: A Review Romanos, M. S.;C. A. Scorer;J. J. Clare https://doi.org/10.1002/yea.320080602
  9. Biotechnol. Bioeng. v.27 Effects of recombinant plasmid content on growth properties and cloned gene product formation in E. coli Seo, J. H.;J. E. Bailey https://doi.org/10.1002/bit.260271207
  10. Practical Flow Cytometry(3rd ed.) Shapiro, H. M.
  11. Yeast v.9 Quantitative flow cytometry: analysis of protein distrubutions in budding yeast Alberghina, L.;D. Porro https://doi.org/10.1002/yea.320090802
  12. Yeast v.12 Selection of yeast cells with a higher plasmid copy number in a Saccharomyces cerevisiae autoselection system Compagno, C.;D. Porro;S. Radice;E. Martegani;B. M. Ranzi https://doi.org/10.1002/(SICI)1097-0061(19960315)12:3<199::AID-YEA895>3.0.CO;2-U
  13. J. Biotechnol. v.21 Dynamic of activation of a galactose-inducible promoter in Saccharomyces cerevisiae Eitzman, P. D.;F. Srienc https://doi.org/10.1016/0168-1656(91)90261-S
  14. J. Biol. Chem. v.275 Cell division regulation by BIR1, a memberof the inhibitor of apoptosis family in yeast Li, F. P.;L. Flanary;D. C. Altieri;H. G. Dohlman https://doi.org/10.1074/jbc.275.10.6707
  15. Yeast v.16 Destabilized green fluorescence protein for monitoring dynamic changes in yeast gene expression with flow cytometry Mateus, C.;S. V. Avery https://doi.org/10.1002/1097-0061(200010)16:14<1313::AID-YEA626>3.0.CO;2-O
  16. Biotechnol. Prog. v.10 Flow-cytometric determination of the respiratory activity in growing Saccharomyces cerevisiae Populations Porro, D.;C. Smeraldi;E. martegani;B. M. Ranzi;L. Alberghina https://doi.org/10.1021/bp00026a009
  17. Res. Microbiol. v.148 Identification of different daughter and parent subpopulations in an asynchronously growing Saccharomyces cerevisiae population Porro, D.;E. Martegani;B. M. Ranzi;L. Alberghina https://doi.org/10.1016/S0923-2508(97)85241-2
  18. Exp. Cell. Res. v.187 Changes in the protain synthesis pattern during a nutritional shift-down transition in Saccharomyces cerevisiae Rodriguez, F.;L. Popolo;M. Vai;E. Lacana;L. Alberghina https://doi.org/10.1016/0014-4827(90)90097-T
  19. Genetics v.155 POB3 is required for both transcription and replication in yeast Saccharomyces cerevisiae Schlesinger, M. B.;T. Formosa
  20. Microbiology v.140 Monitoring of peroxisome induction and degradation by flow cytometric analysis of Hansenula polymorpha cells growing on methanol and glucose media: cell volume, refractive index and FITC retention Smeraldi, C.;E. Berardi;D. Porro https://doi.org/10.1099/13500872-140-11-3161
  21. Ann. NY Acad. Sci. v.665 Kinetics of the cell cycle of Saccharomyces cerevisiae Srienc F.;B. S. Dien https://doi.org/10.1111/j.1749-6632.1992.tb42574.x
  22. Biochim. Biophys. Acta v.1008 Expression of cloned Saccharomyces diastaticus glucoamylase under natural and inducible promoters Vanoni, M.;M. Lotti;L. Alberghina https://doi.org/10.1016/0167-4781(80)90004-4
  23. Nature v.206 Structure of hen egg white lysozyme Blake, C. C. F.;D. F. Koenig;G. A. Mair;A. L. T. North;D. C. Philips;N. R. Sarma https://doi.org/10.1038/206757a0
  24. Gene v.66 Cloning of human lysozyme gene and expression in the yeast Saccharomyces cerevisiae Castaman, M. Y.;W. Spevak;G. R. Adolf;E. Chlebowicz-Sledziewska;A. Sledziewska https://doi.org/10.1016/0378-1119(88)90359-9
  25. Anal. Biochem. v.128 Tubidimetric determination of lysozyme with Micrococcus lysodeikticus cells: Reexamination of reaction conditions Morsky, P. https://doi.org/10.1016/0003-2697(83)90347-0
  26. Biochem. J. v.107 The kinetics of enzyme changes in yeast under conditions that cause th loss of mitochondria Chamman C.;W. Bartley https://doi.org/10.1042/bj1070455
  27. Biochem. J. v.90 Changes in the structure and enzyme activity of Saccharomyces cerevisiae in response to changes in the environment Polakis E. S.;W. Bartley;G. A. Meek https://doi.org/10.1042/bj0900369