• Title/Summary/Keyword: New energy system

Search Result 4,406, Processing Time 0.035 seconds

New Reclosing Technique in Distribution System with Battery Energy Storage System (BESS가 연계된 배전계통에서 새로운 재폐로 기법)

  • Seo, Hun-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.1
    • /
    • pp.21-27
    • /
    • 2016
  • The study concerning about the grid connection of the large-capacity battery energy storage system(BESS) is increasing. However, the protection study which is necessary to maintain the reliability of distribution system has been hardly performed. Therefore, this paper analyzes the effect of reclosing among protection issues in distribution system with BESS and proposes the new relcosing method. To verify the proposed method, the BESS, distribution system, and proposed method are modeled by using EMTP/ATPDraw and the various simulations according to the fault clearing time are performed. The simulation results show that the reclosing in distribution system with BESS is successfully performed by proposed method and the operation of BESS is not affected from reclosing.

Study of a High Energy Density Battery Using a 3D Sulfur Electrode (3D S 전극을 활용한 고에너지밀도 전지 연구)

  • Song, Da-in
    • New & Renewable Energy
    • /
    • v.16 no.4
    • /
    • pp.1-8
    • /
    • 2020
  • The possibility of conversion to the RC-MAT propulsion system (gasoline engine → electric motor) was studied. However, as commercial battery capacities are low. it is not possible to change the propulsion system. Nevertheless, development of nex-generation batteries is necessary for high capacity and high energy density. Although Li/S batteries are theoretically suitable as new generation batteries, these batteries are not composed of only Li and S. Hence, ensuring high energy density can be difficult. Moreover, electrolytes are important components in the study of energy density; hence, the battery by Li2S8 Molarity was sorted. There are no studied on its various electrode components. In this study, a Li/S battery was fabricated using an assorted 3D sulfur electrode of high energy density and its electrochemical properties were studied. The Li/S battery has a high energy density of 468 Wh/kg at 1.28 M Li2S8 (A805-1.28). Its capacity rapidly decreased after 1 cycle with more than 1 M Li2S8.

Exergy and Entransy Performance Characteristics of Cogeneration System in Parallel Circuit Using Low-Grade Heat Source (저등급 열원으로 구동되는 병렬 열병합 발전시스템의 엑서지와 엔트랜시 성능 특성)

  • KIM, KYOUNG HOON;KIM, KYOUNGJIN;JUNG, YOUNGGUAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.1
    • /
    • pp.77-85
    • /
    • 2021
  • In this paper, entransy analysis is carried out for combined heat and power (CHP) generation system driven by low-grade heat source compared with energy and exergy analyses. The system consists of an organic Rankine cycle (ORC) and an additional process heater in a parallel circuit. Special attention is paid to the effects of the source temperature, turbine inlet pressure, and the working fluid on the thermodynamic performance of the system. Results showed that the work efficiency of entransy is higher than that of energy but lower than that of exergy, wheress the process heat efficiency of entransy is lower than that of energy but higher than that of exergy. Entrancy analysis showed the potential to complement the exergy analysis in the optimal design of the energy system.

The Performance Improvement of Fuel Cell System by using LH2 Exergy (액체수소의 Exergy를 이용한 연료전지 시스템의 성능향상)

  • Park, Dong Pil;Jeong, Kwi Seong;Oh, Byeong Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.3
    • /
    • pp.211-217
    • /
    • 2001
  • From wood to coal and petroleum, mankind has used various fuel. Since using such fuel, mankind has developed power source of mechanism. We obtain numerous power from caloric force. Present energy supply is based on the fossil fuel. Fossil fuel has high energy density and is convenient for transportation and storage. Human being prepared countermeasure of energy economy, high energy efficiency and substitution energy for limits of fossil fuel. High energy efficiency among them is very important. This research will improve total output by physical exergy recovery of $LH_2$-fuel cell system.

  • PDF

Performance Degradation of a Battery in an Energy Storage System (ESS) under Various Operating Conditions and Monitoring Study of ESS Connected with Photovoltaic (에너지 저장 시스템 (ESS)용 배터리의 운전조건에 따른 성능 저하 및 태양광 연계형 ESS 모니터링 연구)

  • Jung, Euney;Jung, Hanjoo;Jeong, Younki;Lee, Jaeyoung;Lee, Hongki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.311-318
    • /
    • 2014
  • Performance degradation of a battery in 20 kWh energy storage system (ESS) under various operating conditions was studied. And energy saving of the ESS was also monitored by connecting with 20 kW photovoltaic (PV). PV-connected ESS saved 5~7% of energy consumption in 2013 compared to that without such system in 2012. As charge-discharge cycle increased, capacity decreased and the performance degradation was glaringly obvious after 40 cycles. And as charge and discharge rate increased, the performance degradation was more serious. After 50 charge-discharge cycles, a lot of degraded product was deposited on the surface of anode and cathode electrodes, and the cathode side was more contaminated. Therefore, in order to maintain the cell performance, it was more important to protect the degradation of the cathode side.

Use of Solar Cell and Nanofiltration Membrane for System of Enzymatic $H_2$ Production Through Light-Sensitized Photoanode (광바이오 수소제조 시스템에서의 쏠라셀 및 나노여과 멤브레인 활용)

  • Shim, Eun-Jung;Bae, Sang-Hyun;Yoon, Jae-Kyung;Joo, Hyun-Ku
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.2
    • /
    • pp.151-156
    • /
    • 2007
  • Solar cell and nanofiltration membrane were utilized in a system of enzymatic hydrogen production through light-sensitized photoanode, which resembles photoelectrochemical(PEC) configuration. Solar cell uses no additional light energy to increase energy for electrons to reduce protons and for holes to oxidize water to oxygen, and nanofiltration membrane replaces a salt bridge successfully with increased ion transport capability. With this system configuration, optimized amount of enzyme(10.98 unit), and an anodized tubular $TiO_2$ electrode($5^{\circ}C$/1 hr in 0.5 wt% HF-$650^{\circ}C$/5 hr) hydrogen evolved at a rate of ca. $43\;{\mu}mol/(cm^2{\times}hr)$ in a cathodic compartment and oxygen generated at a rate of ca. $20\;{\mu}mol/(cm^2{\times}hr)$ in an anodic compartment. The stoichiometric evolution of gases indicated that water was splitted in the system.

Energy Management Technology Development for an Independent Fuel Cell-Battery Hybrid System Using for a Household (가정용 독립 연료전지-배터리 하이브리드 에너지 관리 기술 개발)

  • YANG, SEUGRAN;KIM, JUNGSUK;CHOI, MIHWA;KIM, YOUNG-BAE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.2
    • /
    • pp.155-162
    • /
    • 2019
  • The energy management technology for an independent fuel cell-battery hybrid system is developed for a household usage. To develop an efficient energy management technology, a simulation model is first developed. After the model is verified with experimental results, three energy management schemes are developed. Three control techniques are a fuzzy logic control (FLC), a state machine control (SMC), and a hybrid method of FLC and SMC. As the fuel cell-battery hybrid system is used for a house, battery state of charge (SOC) regulation is the most important factor for an energy management because SOC should be kept constant every day for continuous usage. Three management schemes are compared to see SOC, power split, and fuel cell power variations effects. Experimental results are also presented and the most favorable strategy is the state machine combined fuzzy control method.

Energy-saving Strategy Based on an Immunization Algorithm for Network Traffic

  • Zhao, Dongyan;Long, Keping;Wang, Dongxue;Zheng, Yichuan;Tu, Jiajing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1392-1403
    • /
    • 2015
  • The rapid development of both communication traffic and increasing optical network sizes has increased energy consumption. Traditional algorithms and strategies don't apply to controlling the expanded network. Immunization algorithms originated from the complex system theory are feasible for large-scale systems based on a scale-free network model. This paper proposes the immunization strategy for complex systems which includes random and targeted immunizations to solve energy consumption issues and uses traffic to judge the energy savings from the node immunization. The simulation results verify the effectiveness of the proposed strategy. Furthermore, this paper provides a possibility for saving energy with optical transmission networks.

Development of Image sensor based automatic sun tracking system (이미지 센서기반의 태양광 자동 추적 시스템 개발)

  • Kim, Se Yoon;An, Seo Kil;Kim, Sung Ho
    • Smart Media Journal
    • /
    • v.3 no.1
    • /
    • pp.22-27
    • /
    • 2014
  • Recently, domestic energy environment is facing new challenges owing to the depletion of fossil fuel such as oil. Renewable energy resources including solar and wind energy are attracting more interests than ever before. However, solar power system is costly in comparison with the conventional power generation systems and also the energy density is low. Furthermore, large area is required in order to install solar power system. Generally, performance of solar power system is affected by weather conditions and alignment of sun and the solar cell modules. In this study, a new type of sun tracking system for solar power system is proposed. To verify the feasibility of the proposed system, actual implementation of prototype system and experiments are carried out.

A PRELIMINARY EVALUATION OF UNPROTECTED LOSS-OF-FLOW ACCIDENT FOR A PROTOTYPE FAST-BREEDER REACTOR

  • SUZUKI, TOHRU;TOBITA, YOSHIHARU;KAWADA, KENICHI;TAGAMI, HIROTAKA;SOGABE, JOJI;MATSUBA, KENICHI;ITO, KEI;OHSHIMA, HIROYUKI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.240-252
    • /
    • 2015
  • In the original licensing application for the prototype fast-breeder reactor, MONJU, the event progression during an unprotected loss of flow (ULOF), which is one of the technically inconceivable events postulated beyond design basis, was evaluated. Through this evaluation, it was confirmed that radiological consequences could be suitably limited even if mechanical energy was released. Following the Fukushima-Daiichi accident, a new nuclear safety regulation has become effective in Japan. The conformity of MONJU to this new regulation should hence be investigated. The objectives of the present study are to conduct a preliminary evaluation of ULOF for MONJU, reflecting the knowledge obtained after the original licensing application through CABRI experiments and EAGLE projects, and to gain the prospect of in-vessel retention for the conformity of MONJU to the new regulation. The preliminary evaluation in the present study showed that no significant mechanical energy release would take place, and that thermal failure of the reactor vessel could be avoided by the stable cooling of disrupted-core materials. This result suggests that the prospect of in-vessel retention against ULOF, which lies within the bounds of the original licensing evaluation and conforms to the new nuclear safety regulation, will be gained.