• 제목/요약/키워드: New bioreactor

검색결과 71건 처리시간 0.026초

유류오염토양으로부터 발생하는 VOC가스처리를 위한 바이오스크러버 개발 (Development of a Bioscrubber for Treatment of VOC Emissions from Contaminated Soil with Hydrocarbons)

  • 장윤영;황경엽;곽재호;최대기
    • 한국토양환경학회지
    • /
    • 제2권1호
    • /
    • pp.83-90
    • /
    • 1997
  • 저농도의 난 수용성 VOC가스가 포함되어 있는 다량의 오염가스를 처리하기 위하여 흡수탑과 생물반응기의 결합체인 새로운 처리시스템을 제시하였다. 바이오스크러버의 스크러버에서는 세정액으로 기상중의 처리대상오염물질의 흡수가 일어나며 세정액은 생물반응기로 이송되어 호기성 미생물이 오염물을 분해시킨다. 본 연구에서는 폐가스중의 VOC분리를 위하여 재순환가능한 고비점용매를 사용하였다. 고비점용매를 포함한 세정액은 기/액 향류접촉이 이루어지는 흡수탑의 충전층에서 폐가스중의 오염물을 분리한다. 흡수탑은 Pall ring충전제로 채워 실제공정을 모사 하고자 하였다. 흡수처리후 생물반응기로 이송된 흡수액은 재생 후 다시 흡수탑으로 재 순환하였다. 실험에 사용된 대상가스는 농도가 400 mg/$\textrm{m}^3$ 인 톨루엔으로, 세정액이 가스흐름과 향류로 약 10~15L/min의 유량으로 충전층을 적시며 내려오는 충전탑내부로 약 100 L/min의 유량으로 도입하였다. VOC처리를 위해 제작된 본 바이오스크러버에서 고비점용매를 이용한 연속실험결과 최적운전 조건에서 약 80%의 처리율을 얻을 수 있었다.

  • PDF

Novel oxygenation for lipopeptide production from Bacillus sp. GB16

  • Lee, Baek-Seok;Lee, Jae-Woo;Shin, Haw-Shook;Choi, Sung-Won;Choi, Ki-Hyun;Lee, Jae-Ho;Kim, Eun-Ki
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XII)
    • /
    • pp.240-244
    • /
    • 2003
  • A novel integrated method for increasing dissolved oxygen concentration in culture media has been developed. It involves adding hydrogen peroxide to the medium, which is then decomposed to oxygen and water by catalase and adding vegetable oil to the medium as antifoam agent and oxygen vector. A new apparatus for automated addition of hydrogen peroxide to the bioreactor to keep the dissolved oxygen concentration constant over the range $10-100%\;{\pm}\;5%$ was tested. A significant increase (over threefold) of cultivation time was obtained while the dissolved oxygen concentration remained stable ($30%\;{\pm}\;5%$). Therefore, use of corn oil mixed with Ca-stearate as oxygen vector and antifoam and hydrogen peroxide as oxygen source to control excessive foam that was generated by microorganism biosurfactant, GB16-BS produced at Bacillus sp. GB16 cultivation was appropriate for stable cultivation.

  • PDF

The Production of Transgenic Livestock and Its Applications

  • Han, Y. M;Lee, K. K.
    • 한국가축번식학회지
    • /
    • 제23권4호
    • /
    • pp.381-391
    • /
    • 1999
  • During the last 20 years, transgenic animal technology has provided revolutionary new opportunities in many aspects of agriculture and biotechnology. Several gene delivery systems including pronuclear injection, retroviral vectors, sperm vectors, and somatic cell cloning have developed for making transgenic animals. In the future major improvements in transgenic animal generation will be mainly covered by somatic cell cloning technology. Many factors affecting integration frequency and expression of the transgenes should be overcome to facilitate the industrial applications of transgenic technology. Transgenic animal technology has settled down in some areas of the biotechnology, especially the mass production of valuable human proteins and xenotransplantation. In the 21st century animal biotechnology will further contribute to welfare of human being.

  • PDF

Treatment of the fuel oxygenate, MTBE, contaminated ground water using Sequence Batch Bioreactor

  • 박기용
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2000년도 창립총회 및 춘계학술발표회
    • /
    • pp.92-95
    • /
    • 2000
  • A mixed bacterial culture capable of mineralizing methyl tort-butyl ether (MTBE), other fuel oxygenates ethers, tertiary carbon alcohols, benzene and toluene was used to inoculate batch reactor and sequence batch reactor (SBR) to treat gasoline contaminated ground water containing about 60 mg/L MTBE, 5 mg/L benzene, 5 mg/L toluene, and low concentrations of several other aromatic and aliphatic hydrocarbons. Respirometery studies showed that MTBE degrading mixed culture could treat MTBE contaminated ground water with addition of nitrogen and phosphate. SBR was operated to demonstrate the feasibility of using suspended growth activated system for the treatment of ground water and to confirm that the respirometry derived kinetics and stoichiometric coefficients were useful for predicting reactor performance. Theoretical performance of the reactor was predicted using mathematical models calibrated with biokinetic parameters derived from respirometry studies.

  • PDF

Analysis for Energy Efficiency of the Algae Façade - Focused on Closed Bioreactor System -

  • Kim, Tae-Ryong;Han, Seung-Hoon
    • KIEAE Journal
    • /
    • 제14권6호
    • /
    • pp.15-21
    • /
    • 2014
  • Recently, energy generation using algae technology is being promising due to the emerging issues on energy insufficiency and environmental contamination, although the solution has not been resolved in aspect of technological and economical efficiencies since it was originally proposed in the early 1980s by many scholars. The energy production technology using algae materials has great values as not only a solution for new energy generation but also an eco-friendly sustainable building equipment system. In addition, cultivation tank for algae using water sources seems to play a role as a decreasing system for thermal transmittance on building components. This study aims at investigating the adaptability towards the future sustainable building with algae technology and testifying the energy efficiency of the algae skins by operating a couple of simulation tools to measure building performances for the proposed prototype of the façade system.

Enhanced Virus Removal by Flocculation and Microfiltration

  • Han Binbing;Carlson Jonathan O.;Powers Scott M.;Wickramasinghe S. Ranil
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권1호
    • /
    • pp.6-9
    • /
    • 2002
  • In this work we have investigated the feasibility of virus clearance by flocculation and tangential flow microfiltration. Chinese hamster ovary cell feed streams were spiked with minute virus of mice and then flocculated using cationic polyelectrolytes prior to tangential flow microfiltration. Our results indicate that flocculation prior to microfiltration leads to more than 100 fold clearance of minute virus of mice particles in the permeate. Today, validation of virus clearance is a major concern in the manufacture of biopharmaceutical products. Frequently new unit operations are added simply to validate virus clearance thus increasing the manufacturing cost. The results obtained here suggest that virus clearance can be obtained during tangential flow microfiltration. Since tangential flow microfiltration is frequently used for bioreactor harvesting this could be a low cost method to validate virus clearance.

Enhanced Essential Oil Formation by Two-phase Culture of Mentha piperita Cells in Shake Flask and Air-lift Bioreactors

  • Kim, Teresa;Kim, Tae-Yong;Bae, Geun-Won;Chae, Young-Am;Lee, Hyong-Joo;Chung, In-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • 제5권6호
    • /
    • pp.364-369
    • /
    • 1995
  • Effect of two-phase culture on Mentha piperita cell growth and essential oil formation was investigated using shake flask and air-lift bioreactors. LiChroprep RP-B(RP-B) addition did not impair M. piperita cell growth, but resulted in stimulated formation of essential oils and increased ratios of extracellular oil to intracellular oil formation. However, the combined use of RP-B and chitosan elicitor was not synergistic. Volumetric productivity of essential oils in RP-B treated culture using cell-recycled air-lift bioreactor was $6.9\;\mu\textrm{g}/l{\cdot}day$ which was substantially higher than that obtainable from the control. Our results demonstrate the potential of a second phase to enhance overall productivity for M. piperita cell culture.

  • PDF

Characteristics of Immobilized PVA Beads in Nitrate Removal

  • Cho Kyoung-Sook;Park Kyoung-Joo;Jeong Hyun-Do;Nam Soo-Wan;Lee Sang-Joon;Park Tae-Joo;Kim Joong-Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권3호
    • /
    • pp.414-422
    • /
    • 2006
  • Before applying PVA bio-beads to practical biological treatment of nitrate-containing wastewater, their characteristics were examined. PVA bio-beads could steadily produce nitrogen gas from nitrate for 28 batches with 0.04 ml/l/h of the maximum gas production rate; however, the maximum gas production rate dropped remarkably thereafter with apparent deformation of beads. Addition of 2.2% solution containing 1% casamino acid, 1% yeast extract, 0.1% mineral solution, and 0.1% vitamin solution to the culture medium resulted in not only recovery of activity of deactivated beads, but also a higher rate of gas production. Calculation of economic benefit for the use of bio-beads in a long-run operation indicated that reactivation of bio-beads by chemicals had economical advantages over packing new bio-beads in the system. The continuously stirred bioreactor exhibited a satisfactory performance at HRT of 20.0 h. With a 9.5 mg $NO_{3}^{-}N/l/h$ nitrate removal rate, nitrate could completely be removed without nitrite accumulation. The use of PVA bio-beads in nitrate removal appears very promising.

Influence of Controlled- and Uncontrolled-pH Operations on Recombinant Phenylalanine Ammonia Lyase Production in Escherichia coli

  • Cui, Jian Dong;Zhao, Gui Xia;Zhang, Ya Nan;Jia, Shi Ru
    • Food Science and Biotechnology
    • /
    • 제18권4호
    • /
    • pp.954-958
    • /
    • 2009
  • Effects of controlled- and uncontrolled-pH operations on phenylalanine ammonia lyase (PAL) production by a recombinant Escherichia coli strain were investigated at uncontrolled-pH ($pH_{UC}$) and controlled-pH ($pH_C$) of 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, and 8.5 in bioreactor systems. The results showed that the recombinant PAL activity was improved significantly by controlled pH strategy. Among the $pH_C$ operations, the highest PAL activities were obtained under $pH_C$ 7.5 strategy where cell mass ($OD_{600\;nm}$) and PAL activity was 1.3 and 1.8 fold higher than those of $pH_{UC}$, respectively. The maximum PAL activity reached 123 U/g. The $pH_C$ 7.5 strategy made recombinant plasmid more stable and therefore allowed easier expression of PAL recombinant plasmid, which increased PAL production. It was indicated that the new approach (controlled-pH strategy) obtained in this work possessed a high potential for the industrial production of PAL, especially in the biosynthesis of L-phenylalanine.

원심 임펠러가 장착된 발효조에서 G. hansenii에 의한 미생물셀룰로오스 생산 (Production of Bacterial Cellulose by Gluconacetobacter hansenii Using a New Bioreactor Equipped with Centrifugal Impellers)

  • 칸살만;쉐자드오머;칸타우스;하정환;박중곤
    • Korean Chemical Engineering Research
    • /
    • 제47권4호
    • /
    • pp.506-511
    • /
    • 2009
  • 미생물셀룰로오스의 생산성을 높이기 위하여 원심(centrifugal) 임펠러와 경사원심(inclined centrifugal) 임펠러가 사용되었다. 발효조 내의 유체흐름 형태와 부피산소전달 계수가 고찰되었으며 원심 임펠러 및 경사원심 임펠러가 장착된 발효조 내에서 G. hansenii PJK 균주에 의하여 미생물 셀룰로오스가 생산되었다. 유체는 발효조 하부에서 원심 임펠러의 실린더 내부를 통과하여 발효조 벽면을 향해 순환되었다. 임펠러의 회전속도 100 rpm에서 부피산소전달계수는 터바인 임펠러 계에 비하여 경사원심 임펠러의 경우는 23%, 원심 임펠러의 경우는 15%에 불과하였다. 하지만 미생물셀룰로오스 생산 불능 돌연변이주로의 전환이 방지되어 20 rpm의 경사원심 임펠러의 회전속도에서 미생물셀룰로오스의 생산량이 터바인임펠러의 최적회전속도 300 rpm에서의 미생물셀룰로오스 생산량과 같았다.